簡易檢索 / 詳目顯示

研究生: 黃信智
Sin-Jhih Huang
論文名稱: 應用非均勻相位集合之部份傳輸序列技術以降低正交分頻多工系統之尖峰平均功率比研究
Modified PTS with Non-uniform Phase Set for PAPR Reduction in OFDM Systems
指導教授: 蔡育仁
Yuh-Ren Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 54
中文關鍵詞: 部份傳輸序列技術正交分頻多工系統尖峰平均功率比
外文關鍵詞: PAPR, OFDM, PTS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工系統是高效率的無線網路的熱門技術,可利用離散快速傅利葉轉換跟反快速傅利葉轉換來達成此項技術。近十幾年來,此技術已應用在非常多的地方跟領域上,例如: 非對稱的數位用戶網路(ADSL)、數位音頻廣播(DAB)、數位視頻廣播(DVB)、WiMAX ( 802. 16)和 寬頻區域網路 802.11(a, b, g) 等等。
    雖然OFDM有許多好處以至於應用廣泛,不過還是有一些缺點存在。其中一項就是它有高的尖峰平均功率比。擁有高的PAPR比對於功率放大器來說,會造成功率放大器需要過大的線性操作區,如此容易導致信號失真嚴重。所以針對此問題,現在已經有許多技術已經克服此項缺點。部份傳輸序列為其中一個方法,而且為公認效果不錯的方法之一。而部份傳輸序列的主要精神為利用固定有限的已知均勻相位集合,去調整不同載波之相位,已達成降低尖峰平均功率比的效果。不過部份傳輸序列有一些缺點,需要較高的複雜度,以及需要傳隱藏資訊給接受端以至於可還原原始的信號。近年來相關PTS的研究都針對PTS的缺點方面改進。
    在此研究論文中,我們是提出不同於以往的相位集合來達到更好降低尖峰平均功率比的效果。在模擬的結果中,很明顯的可以看出在考慮
    相同數目的相位集合之元素情況下,我們提出的非均勻的相位集合的模擬結果比舊的均勻相位集合好。


    Orthogonal frequency division multiplex (OFDM) is a very effective technique for the wireless high-speed data transmission and robust for selective fading channel and inter-symbol interference (ISI). Recently, OFDM has been used widely in many kinds of communication transmission systems and method such as digital audio broadcasting (DAB), wireless local-area network (WLAN), IEEE 802.11, WiMAX (IEEE 802. 16) and Asymmetric Digital Subscriber Line (ADSL).

    However, it has some drawbacks to improve. One serious disadvantage is high peak-to-average power ratio (PAPR). If the transmitted signal has high PAPR, the D/A converters and amplifiers need to have large dynamic range. Otherwise output signal will have serious distortion.

    In recent years, many schemes are efficient to reduce PAPR. Although a lot of schemes can reduce PAPR efficiently, we only focus on PTS algorithm and have a modified one in this thesis. In the thesis, we propose a non-uniform phase set in PTS and show it has better performance than original phase set in PTS.

    Chapter 1 .............................................1 Introduction......................................1 Chapter 2 .............................................3 OFDM System.......................................3 2.1 Introduction of OFDM..............................3 2.2 The Drawbacks and Advantages of OFDM..............5 2.3 OFDM Signal Model.................................6 2.4 Guard Interval and Cyclic Prefix..................9 2.5 Applications of OFDM..............................11 Chapter 3 .............................................12 PAPR Problem in OFDM and Several PAPR Reduction Techniques.........................................12 3.1 Introduction for PAPR.............................12 3.2 PAPR Problem in OFDM..............................13 3.3 Distribution of PAPR..............................14 3.4 Several PAPR reduction schemes....................16 3.4.1 Clipping........................................16 3.4.2 Selective Mapping (SLM).........................17 3.4.3 Dummy sequence insertion (DSI)..................18 3.4.4 Tone Reservation (TR)...........................20 3.4.5 Block coding....................................22 3.4.6 Partial Transmit Sequence (PTS).................24 Chapter 4 .............................................30 New Phase Factor for PTS..........................30 4.1 Observation for Difference Phase..................30 4.2 Definition of New Phase Factor....................34 4.3 Phase Quantization................................38 Chapter 5 .............................................46 Simulation Results................................46 5.1 Simulation Parameters.............................46 5.2 Simulation of PTS with non-uniform phase set (w=4).............................................46 5.3 Simulation of PTS with non-uniform phase set (w=8).............................................47 5.4 PTS with non-uniform phase set under oversampling.48 5.5 PTS with non-uniform phase set under different block size..............................................50 5.6 PTS with non-uniform phase set and different signal length............................................51 Chapter 6 .............................................52 Conclusions.......................................52 References............................................53

    [1] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communication. Boston, MA: Artech House, 2000.
    [2] T. A. Wilkinson and A. E. Jones, “Minimization of the peak-to-mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. IEEE Vehicular Technology Conference, Chicago, IL, pp. 825–829, 1995.
    [3] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, golay complementary sequences, and Reed–Muller codes,” IEEE Trans. Inf. Theory, Vol. 45, No. 7, pp. 2397–2417, 1999.
    [4] J. A. Davis and J. Jedwab, “Peak-to-mean Power control and error correction for OFDM transmission using Golay sequences and Reed-Muller codes,” Electron. Letters, Vol. 300, No. 4, pp. 267-268, 1997.
    [5] S. H. Muller, J.B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Letters, Vol. 33, pp. 368-369, 27, 1997.
    [6] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Letters, Vol. 32, no. 22, pp. 2056–1257, 1996.
    [7] H. G. Ryu, J. E. Lee, and J. S. Park, “Dummy sequence insertion (DSI) for PAPR reduction in the OFDM communication system,” IEEE Trans. Consum. Electron., Vol. 50, pp. 89–94, 2004.
    [8] N. Petersson, A. Johansson, P. O dling, and P. O. Borjesson, “Analysis of tone selection for PAR reduction,” in Proc. International Conference on Information, Communications and Signal Processing, Singapore, 2001.
    [9] B. S. Krongold and D. L. Jones, “An Active-set Approach for OFDM PAR Reduction via Tone Reservation,” IEEE Trans. Signal Process. Vol. 52, pp. 495-509, 2004.
    [10] Krongold, B. S. and D. L, “A new tone reservation method for complex-baseband PAR deduction in OFDM systems,” IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002.
    [11] Ochiai, H. and Himai, H., “Performance Analysis of Deliberately Clipped OFDM Signals,” IEEE Trans. Consum., Vol. 50, pp. 89-101, 2002.
    [12] H. J. Kim, S. C. Cho, H. S. Oh, and J. M, Ahn, “Adaptive clipping technique for reducing PAPR on OFDM systems,” in Proc. IEEE Vehicular Technology Conference, Vol. 3, pp. 1478-1481, 2003.
    [13] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS.” IEEE Commun. Letters, Vol. 5, pp. 135 - 137, 2001.
    [14] Wang, C.-L.; Ouyang, Y., "Low-Complexity Selected Mapping Schemes for Peak-to-Average Power Ratio Reduction in OFDM Systems," Signal Processing, IEEE Transactions, Vol. 53, pp. 4652- 4660, 2005.
    [15] L. J. Cimini, Jr. and N. R. Sollenberger, "Peakto-Average Power Ratio Reduction of an OFDM Signal Using Partial Transmit Sequences," Proc. IEEE GLOBECOM '99, 1999.
    [16] You Y H and Jeon W G. “Low-complexity PAR reduction schemes using SLM and PTS approaches for OFDM-CDMA signals,” IEEE Trans. on Consumer Electronics, pp. 284 - 289, 2003.
    [17] M. Breiling, S. H. Müller-Weinfurtner, and J.B. Huber, “SLM Peak-Power Reduction Without Explicit Side Information,” IEEE Commun. Letters, Vol. 5, pp. 239-241, 2001.
    [18] XIN Y. and FAIR I. J., "Low complexity PTS approaches for PAPR reduction of OFDM signal,” Proc. International Conference on Communications, Seoul Korea, pp. 1991-1995, 2005.
    [19] YANG L. and CHEN R. S. “PAPR Reduction of OFDM Signal by Use PTS With Low Computational Complexity,” IEEE Trans. Broadcasting, pp. 83–86, 2005.
    [20]C. Tellambura and A. D. S. Jayalath, “PAR reduction of an OFDM signal using partial transmit sequences,” IEEE Vehicular Technology Conference, pp. 465 – 469, 2001.
    [21] Cimini, L.J., Jr. and Sollenberger, N.R., “Peak-to-average power ratio reduction of an OFDM transmit sequences,” IEEE Commun. Letters, Vol. 4, pp.86 – 88, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE