簡易檢索 / 詳目顯示

研究生: 鐘泰
Chung, Tai
論文名稱: 利用隱馬可夫模型與個別使用者訓練之壓縮感知式眼 動八方向偵測的腦機介面系統
A Compressive Sensing Aided EEG-based BCI System for Eye Movement Eight Direction Classification Using HMM with Independent user Training
指導教授: 黃元豪
Huang, Yuan-Hao
口試委員: 楊家驤
蔡佩芸
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 61
中文關鍵詞: 腦頭皮電位隱馬可夫模型眼動腦機介面系統
外文關鍵詞: EEG, Hidden Mokov Model, eye movement, BCI-system
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,穿戴式裝置漸漸地成為世界上的主流,腦機介面(Brain-Computer
    Interface, BCI)就是其中之一,它是測量腦頭皮電位(electroencephalography ,EEG)
    的訊號,對使用者而言,腦頭皮電位的取得也越來越容易和便宜。腦機介面通常
    的使用在醫療還有娛樂上。為了更便利的取得腦頭皮電位,我們使用了無線可攜
    帶式的儀器,因為關係的無線傳輸的問題,在此篇論文中,我們引用了[1]的壓
    縮技術和眼動偵測,並且針對個別使用者進行訓練。 首先,我們使用了EPOC
    的腦波量測儀器去取得腦頭皮電位(EEG)的訊號,並且Emotiv 提供一個連結電腦
    和儀器的介面。為了可以偵測八個方向和找出每個使用者的參數。在這篇論文中,
    我們提出了兩種模式,分別是訓練模式(training mode) 和 偵測模式(detection
    mod)。 在訓練模式中,我們儲存一段只有左右和上下眼動的腦頭皮電位(EEG)訊
    號。並使用獨立分項分析(Independent Component Analysis , ICA)去萃取眼動
    特徵。因為獨立分項分析是屬於未知原始訊號的演算法(blind source algorithm),
    所以我們利用權重選擇(weighting selection)去找出左右和上下眼動的權重,並且
    也找出左右和上下眼動的最大值最小值。訓練者模式結束後,我們會得到左右和
    上下眼動的權重以及最大值最小值,將這些數值使用在偵測模式中去偵測八個方
    向。我們使用了隱藏馬可夫模型(Hidden Markov Model , HMM)去進行眼動的分類,
    再將左右和上下的分類結果結合成八個方向。最後我們可以使用八個方向去控制
    滑鼠點擊螢幕小鍵盤並且在文件中輸入字母。


    In recent years, the wearable devices is an essential trend of world, among them brain-
    computer interface(BCI) utilized electroencephalography (EEG) signal measurement be-
    comes more accessible and cheaper for users. BCI is commonly used for medical usage
    or entertainment applications. For EEG signal acquisition, wireless portable devices
    are preferred due to their convenience. In the wireless scenario, power and bandwidth
    become important issues. In this thesis, we follow the compress technique and detection
    mode in [1], and provide independent training for each user. At rst, we used EPOC
    headset to acquire EEG signals, and Emotiv o er API between EPOC device and PC.
    In order to detect eight direction eye movement and nd parameter for each user. In
    this thesis, we proposed two mode in our system, respectively training mode and de-
    tection mode. In training mode, we store the EEG signal that only Left/Right and
    Up/Down eye movement, and used Independent Component Analysis(ICA) to extract
    feature. Because of ICA is blind source algorithm, we used weighting selection to nd
    Left/Right and Up/Down weighting, and nd Max/Min value of eye movement signal.
    After training mode, we used Left/Right and Up/Down weighting and Max/Min value
    of eye movement signal to detect eight direction in real-time. We used Hidden Markov
    Model (HMM) to do eye movement direction classi cation, and combined Left/Right
    and Up/Down result to detect eight direction. Finally we can control eight direction of
    mouse to click monitor keyboard to key the words in the text le.

    1 Introduction 1 1.1 General Background Information . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Motivation and Previous Works . . . . . . . . . . . . . . . . . . 2 1.3 EEG Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Eye Movement Direction System 5 2.1 Event-Related Potential of Eye Movement Characteristic . . . . . . . . . 6 2.2 Preprocessing of EEG Signal . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Extended Moving Di erence and Frequency Domain Analysis . . 6 2.2.2 Independent Component Analysis . . . . . . . . . . . . . . . . . . 9 2.3 Classi cation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Viterbi Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.1 Signal Reconstruct via Orthogonal Matching Pursuit . . . . . . . 20 3 Proposed eye movement of eight direction and training system 23 3.1 Eight Direction Characteristic . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Training Mode System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ii CONTENTS 3.2.1 Independent Component Analysis Weight Selection . . . . . . . . 31 3.3 Eight Direction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.2 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.3 Eight Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 System Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Implementation Results 49 4.1 Design and Implementation of the Brain-Computer Interface . . . . . . . 49 4.2 FPGA Veri cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 Real-time Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5 Conclusion 57

    [1] H.-P. Chu, \A compressive sensing aided eeg-based bci system for eye movement
    direction classi cation using hmm," October 2013.
    [2] T. Lee, \Independent component analysis: Theory and appliciation," Kluwer Aca-
    demic Publishers, Boston ISBN : 0-7923-8261-7, pp. 7{11; 18{21; 27{49; 83{100,
    1998.
    [3] \http://www.cqasc.co.uk/."
    [4] J. J. Vidal, \Toward direct brain-computer communication," Annual Review of
    Biophysics and Bioengineering, vol. 2, pp. 157{180, June 1973.
    [5] A. Funase, T. Yagi, Y. Kuno, and Y. Uchikawa, \Prediction of eye movements from
    EEG," in International Conference on Neural Information Processing, vol. 3, 1999,
    pp. 1127{1131.
    [6] A. Funase, T. Hashimoto, T. Yagi, A. K. Barros, A. Cichocki, and I. Takumi, \Re-
    search for estimating direction of saccadic eye movements by single trial processing,"
    in IEEE Engineering in Medicine and Biology Society, 2007, pp. 4723{4726.
    [7] T. Ito, T. Shinji, H. Sumiya, and M. Baba, \Eye movement-related EEG potential
    pattern recognition for real-time bmi," in Proceedings of SICE Annual Conference,
    2010, pp. 1055{1059.
    60 BIBLIOGRAPHY
    [8] S. S. Gupta, S. Soman, P. G. Raj, R. Prakash, S. Sailaja, and R. Borgohain,
    \Detecting eye movements in EEG for controlling devices," in IEEE Conference on
    Computational Intelligence and Cybernetics, 2012, pp. 69{73.
    [9] A. Cohen, \Hidden markov models in biomedical signal processing," in IEEE Con-
    ference Engineering in Medicine and Biology Society, vol. 3, 1998, pp. 1145{1150.
    [10] E. J. Cands and M. B. Wakin, \An introduction to compressive sampling," IEEE
    Signal Processing Magazine, vol. 25, no. 2, pp. 21{30, 2008.
    [11] BCI-2000, \http://www.bci2000.org/wiki/index.php/user tutorial:eeg measurement setup,"
    September 2012.
    [12] sccn, \sccn.ucsd.edu/eeglab/."
    [13] T.-P. Jung, S. Makeig, M. Wester eld, J. Townsend, E. Courchesne, and T. J. Se-
    jnowski, \Independent component analysis of single-trial event-related potentials,"
    in Proc. ICA', Jan. 1999, pp. 173{178.
    [14] H. Yu, H. Lu, T. Ouyang, H. Liu, and B. Lu, \Vigilance detection based on sparse
    representation of EEG," in Proc. IEEE EMBC, 2010, pp. 2439{2442.
    [15] A. J. Bell and T. J. Sejnowski, \An information-maximization approach to blind
    separation and blind deconvolution," Neural Computation, vol. 7, pp. 1129{1159,
    1995.
    [16] T. W. Lee, M. Girolami, and T. J. Sejnowski, \Independent component analysis
    using an extended infomax algorithm for mixed sub-gaussian and super-gaussian
    sources," Neural Computation, vol. 11, no. 2, pp. 409{433, 1999.
    [17] S. B. A. J. T-P and T. Sejnowski, \Independent component analysis of electroen-
    cephalographic data," D. Touretzky M. Mozer and M. Hasselmo (Eds). Advances
    BIBLIOGRAPHY 61
    in Neural Information Processing Systems,MIT Press, Cambridge, pp. 8:145{151,
    1996.
    [18] P. Blunsom, \Hidden markov models," 2004.
    [19] G. D. Forney and Jr., \The viterbi algorithm," Proceedings of the IEEE, vol. 61,
    no. 3, pp. 268{278, 1973.
    [20] S. Chatterjee, K. Hari, P. Handel, and M. Skoglund, \Projection-based atom selec-
    tion in orthogonal matching pursuit for compressive sensing," in National Confer-
    ence on Communications, 2012, pp. 1{5.
    [21] J. A. Tropp and A. C. Gilbert, \Signal recovery from random measurements via
    orthogonal matching pursuit," Information Theory, IEEE Transactions on, vol. 53,
    no. 12, pp. 4655{4666, dec. 2007.
    [22] A. M. Abdulghani, A. J. Casson, and E. Rodriguez-Villegas, \Quantifying the
    performance of compressive sensing on scalp EEG signals," in Proc. ISABEL, 2010,
    pp. 1{5.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE