研究生: |
劉欣瑋 Liu, Hsin-Wei |
---|---|
論文名稱: |
動物進行X光檢查時之輔助者劑量評估 Investigation of the helper's dose during veterinary X-ray inspection |
指導教授: |
許靖涵
Hsu, Ching-Han 許芳裕 Hsu, Fang-Yuh |
口試委員: |
趙自強
Chao, Tzu-Chiang 游澄清 Yu, Cheng-Ching |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 熱發光劑量計 、塑膠閃爍偵檢器 、動物用X光 、輔助人員之有效劑量 |
外文關鍵詞: | scintillation survey meter, veterinary X-ray, helper's dose |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年,隨著國內飼養寵物之比例逐年上升,動物醫院之數量亦呈現增加之趨勢。基於某些健康之因素,動物會被送至動物醫院進行診斷及治療,獸醫師通常會透過 X 光影像輔助診斷。動物進行 X 光照射時,大部分需要輔助者於X光室內協助固定動物,因 此該輔助者會接受到一定程度之劑量。故本研究之目的為建立輔助者於 X 光室內劑量之量測方法並評估該輔助者所接受之劑量以及提供相關輻射防護之建議。
本研究之實驗設計為放置自製假體於距離照野中心 50 公分處,並於假體上黏貼 TLD,相同位置亦放置 AT1121 及個人劑量佩章進行量測。並使用MCNP模擬進入 TLD之散射輻射有效能量以及自製假體與 ICRU假體之間劑量轉換因子。結果顯示如需使用個人劑量佩章進行動物用 X 光室內之輔助人員劑量監測則需多次曝露,使劑量值高於最低可測劑量值。另外,使用AT1121 時應調整為 Tvar 模式,較能準確地量測到該次曝露所造成之劑量。並於研究最後提供一劑量計算式,透過該計算式可以將 AT1121 之量測值轉換為 TLD 之劑量值後,再乘上 E/H*(10)之轉換因子得到有效劑量,用以評估輔助人員所可能接受之劑量。
In Taiwan, the number of veterinary hospital is growing rapidly in nearly two decades. For some health reasons, the pet is usually sent to a veterinary hospital to perform the X-ray inspection. Because the pet breeder needs to accompany the pet inside the X-ray room during the X-ray inspection in most cases, the breeder or helper in the X-ray room is also exposed to the scattered X-ray
radiation. Thereby, the purpose of this study is to build the
method to evaluate the helper’s dose and investigate the exposed effective doses of the helpers inside the X-ray inspection room during general veterinary radiographic procedures.
Over 40 veterinary hospitals were inspected on-site in this study. The doses were mainly measured using a plastic scintillation survey meter (Atomtex AT1121), the thermoluminescent dosimeters (TLDs) and personnel dose badges in some cases. By means of setting the survey meter at the position of the pet breeder's (helper's) body which is assumed at a distance of 50 cm from X-ray
field center, and considering the conditions of wearing with and without lead apron respectively. The ambient dose equivalents were measured by the survey
meter. And the measured ambient dose equivalents were transferred into effective dose by considering the conversion factors suggested in EURADOS RP 106 report. Besides, Monte Carlo (MCNP) simulation was used to simulate the effective energy of scattered radiation and the conversion factors of the experimental phantom to the ICRU phantom.
The results show that the personnel dose badge may not be an appropriate dosimeter to evaluate the dose of helper inside the X-ray room since the dose per inspection is too low. Doses measured by different dosimeters are discussed and presented in this study. Besides, the helper’s dose measured by AT1121 should operate in Tvar mode instead of T mode. In the result of this paper, a
formula is provided to convert the ambient dose equivalent,
measured by AT1121 survey meter, into an effective dose to facilitate follow-up evaluation of the helper's dose.
1. Choudhary, S., Deterministic and Stochastic Effects of Radiation. Canc Therapy & Oncology International, 2018. 12(2).
2. ICRP, 1990 Recommendations of the International Commission on Radiological Protection. 1991.
3. Duffy, J., et al., Code of practice for radiation
protection in veterinary medicine. 2002: Ireland. p. 27.
4. 行政院原子能委員會, 游離輻射防護安全標準. 2005.
5. Barber, J. and J.P. McNulty, Investigation into scatter radiation dose levels received by a restrainer in small animal radiography. Journal of Small Animal Practice, 2012. 53(10): p. 578-585.
6. Board, C.V.M., Radiation Safety. relating to veterinary medicine and animal health technology in California 2012.
7. 姚潔宜, X光的奇妙世界. 國家奈米元件實驗室奈米通訊, 2015.22(1): p. 34-38.
8. Palgrave, K., Radiography in veterinary practice – a review and update. Veterinary Nursing Journal, 2012. 27(2): p. 51-55.
9. Stewart C. Bushong, S., FACR, FACMP, Professor of Radiologic Science, Baylor College of Medicine, Houston, TX, Radiologic Science for Technologists. 2009.
10. Canada, H.a.W., Safety code 28: Radiation protection in veterinary medicine: recommended safety procedures for installation and use of veterinary X-ray equipment. 1991.
11. Agency, A.R.P.a.N.S., Code of Practice and Safety Guide., in Radiation Protection in Veterinary Medicine. 2009: Radiation Protection series No.17.Australia.
12. ICRP, The 2007 Recommendations of the International Commission on Radiological Protection. 2007. p. p73-p75.
13. Chinangwa, G., J.K. Amoako, and J.J. Fletcher, Radiation dose assessment for occupationally exposed workers in Malawi. Malawi medical journal : the journal of Medical Association of Malawi, 2017. 29(3): p. 254-258.
14. Canato, G.R., et al., Occupational exposure assessment in procedures of portable digital veterinary radiology for small size animals. Radiation Physics and Chemistry, 2014. 95: p. 284-287.
15. Kawabe, A., et al., Estimation of Occupational Radiation Exposure in Veterinary Practice. Journal of Animal Clinical Medicine, 2010. 19(4): p. 113-117.
16. H. Oh, S.S., S. Lim, Y. Jung, Y. Cho, K. Lee, Restrainer exposure to scatter radiation in practical small animal radiography measured using thermoluminescent dosimeters. Veterinarni Medicina, 2018. 63(2): p. 81-86.
17. Niklason, L., M. Victoria Marx, and H.-P. Chan, The Estimation of Occupational Effective Dose in Diagnostic Radiology With Two Dosimeters. Vol. 67. 1995. 611-5.
18. Hupe, O. and U. Ankerhold, Dose to persons assisting voluntarily during X-ray examinations of large animals. Radiat Prot Dosimetry, 2008. 128(3): p. 274-8.
19. 鄒宗龍, et al., TLD-100及TLD-100H熱發光劑量計之消光特性分析. 台灣應用輻射與同位素雜誌, 2008. 4(2): p. 481-488.
20. Le Guillou, M., et al., State of the art on nuclear heating measurement methods and expected improvements in zero power research reactors. Vol. 3. 2017. 11.
21. Scientific, T.F. TLD Materials Comparison Chart and TLD Materials Product Brochure.
22. Del Sol Fernández, S., et al., Thermoluminescent characteristics of LiF:Mg, Cu, P and CaSO4:Dy for low dose measurement. Applied Radiation and Isotopes, 2016. 111: p. 50-55.
23. Marino, S.A., et al., Modification of shirt buttons for retrospective radiation dosimetry after a radiological event. Health physics, 2011. 100(5): p. 542-547.
24. Knoll, G.F., Radiation detection and measurement. 4th ed. 2010.
25. Qwerty123uiop, Schematic view of a photomultiplier coupled to a scintillator, illustrating detection of gamma rays. 2013: Wikipedia.
26. Atomtex. portable dosimeter AT1121 datasheet.
27. White, D.R., et al., Report 44. Journal of the International Commission on Radiation Units and Measurements, 1989. os23(1): p. NP-NP.
28. White, D.R., et al., Report 48. Journal of the International Commission on Radiation Units and Measurements, 1992. os25(1): p. NP-NP.
29. Hupe, O. and U. Ankerhold, Determination of the dose to persons assisting when X-radiation is used in medicine, dentistry and veterinary medicine. Vol. 144. 2010. 478-81.
30. hospital, t.c.v. Your Veterinary Technician: Radiology.
31. ATTIX, F.H., Introduction to Radiological Physics and Radiation Dosimetry. 1986.
32. RTI Electronics AB, S., Conversion tables between HVL and Total Filtration. 2010.
33. Healthineers, S. Simulation of X-ray Spectra Online tool for the simulation of X-ray Spectra
34. 張馥讌, 許., 許., 介入性心導管診療之人員劑量評估. 2018.
35. Roberson, P. and R. Douglas Carlson, Determining the Lower Limit of Detection For Personnel Dosimetry Systems. Vol. 62. 1992. 2-9.
36. Usdoe Assistant Secretary for Environment, S. and W.D.C. Health, Department of Energy standard for the performance testing of personnel dosimetry systems. 1986: United States. p. 36.
37. Herman Cember, T.E.J., Introduction to Health Physics. 2009.
38. 行政院原子能委員會. 輻射的防護.
39. ATOMEX, AT1121 X-RAY AND GAMMA RADIATION DOSIMETER User’s Manual 2007.
40. 劉育容, 許., 許, 介入性放射診療之醫療工作人員眼球水晶體劑量評估. 2017.
41. I.M.G. Thompson, L.B.-J., S.Deme,F.Pernicka,and J.C.Saez-Vergara, Technical recommendations on measurements of external environmental gamma radiation doses 1999.
42. ICRP, Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. . 2010.