簡易檢索 / 詳目顯示

研究生: 余柏勳
Yu, Po-Hsun.
論文名稱: 由雙光子吸收訊號調制似噪音脈衝產生超連續光譜
Modulation of Noise-like Pulses from Two-photon Absorption Signals for Supercontinuum Generation
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 楊承山
Yang, Chan-Shan
吳小華
Wu, Hsiao-Hua
賀清華
Her, Tsing-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 78
中文關鍵詞: 光纖雷射鎖模脈衝似噪音脈衝超連續光譜
外文關鍵詞: fiber laser, mode locked pulses, noise-like pulses, supercontinuum
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用雙光子吸收訊號做為回饋信號,我們在全正色散(ANDi)及映射色散(dispersion-mapped)鐿摻雜光纖雷射系統中可自動控制產生似噪音脈衝(noise-like pulses)。若調整泵浦功率和雙光子吸收訊號,我們可以調制雷射輸出功率並控制其脈衝特性,如光強度自相干函數(Intensity autocorrelation trace)之底座(pedestal)、尖峰(spike)寬度及尖峰到肩部比例(spike to shoulder ratio)。我們也研究以似噪音脈衝激發單模光纖及光子晶體光纖來產生超連續光譜(supercontinuum,簡稱SC)。由於超連續光譜涵蓋紅光至近紅外光波段,從683 nm 到 1743 nm,我們使用標準光源來校正不同範圍之兩台光譜儀並銜接其光譜。經過校正,我們將光強度由任意單位轉成絕對輻射照度。
    使用全正色散雷射系統連接50公尺單模光纖,當雙光子吸收訊號從1233 mV上升至2130 mV,似噪音脈衝之光強度相關函數(Intensity autocorrelation function)之底座寬度從426 ps 下降到 357 ps,SC之10-dB光譜帶寬從527 nm(1002 nm~1527 nm)上升到1138 nm(998 nm~2138 nm),光譜範圍為近紅外光波段且為平滑光譜。使用映射色散雷射系統連接五公尺光子晶體光纖,當雙光子吸收訊號從2030 mV上升到2617 mV,似噪音脈衝之光強度相關函數(Intensity autocorrelation function)之底座均為10 ps,尖峰到肩部比例從1.30上升到1.49,SC之10-dB光譜帶寬從1022 nm(685 nm~1707 nm)上升至1060 nm(683 nm~1743 nm),光譜為一平滑光譜,光譜範圍包含可見光至近紅外光波段。


    Using two photon absorption (TPA) signal as a feedback signal. We take advantage of all normal dispersion (ANDi) and dispersion mapped Yb-doped fiber laser system to generate noise-like pulses (NLPs) in automatic control. If we adjust the pump power and TPA signals, we can modulate output power, spectrum and pulses characteristics of NLPs, like pedestal, spike width, and spike to shoulder ratio. We also study NLPs to generate supercontinuum by using single mode fiber (SMF) or photonic crystal fiber (PCF). Since the spectrum of supercontinuum generation covered from red light to near infrared, from 683nm to 1743 nm, we use standard light source to calibrate two different range spectrometers and link up the spectrum. We transform the light intensity from arbitrary unit to absolute irradiance through calibration.
    By using ANDi fiber laser system connected with 50m-SMF, when TPA signals increase from 1232 mV to 2130 mV ,pedestals of Intensity autocorrelation function of NLPs decrease from 426 ps to 357 ps,10-dB bandwidth of SC increases from 527 nm(1022 nm ~1527 nm) to 1138 nm(998 nm~2138 nm). Spectral range covered near infrared part and the spectrum is smooth. By using dispersion-mapped fiber laser connected with 5-meter PCF, when TPA signals increase from 2030 mV to 2617 mV ,pedestal widths of NLPs are both 10 ps, spike to shoulder ratio increase from 1.3 to 1.49 ,10-dB bandwidth of SC increase from 1022 nm(685 nm~1707 nm) to 1060 nm(683 nm~1743 nm). The spectrum is smooth, and the spectral range covered from visible light to near infrared.

    中文摘要 I Abstract II 致謝 IV Table of Contents V List of Figures VIII List of Tables XI List of Abbreviations XII Chapter 1 Introduction 1 Chapter 2 Theoretical background 2 2.1 Ytterbium-doped fiber laser and amplifier 2 2.1.1. Ytterbium-doped fiber 3 2.1.2. Pumping wavelength of laser diode 5 2.1.3. Doped fiber amplifier 5 2.1.4. Operation of cladding pumping 6 2.1.5. Amplified Spontaneous Emission (ASE) 7 2.2 Mode-locking techniques 8 2.2.1. Mode-locking theory 9 2.2.2. Active mode-locking 10 2.2.3. Passive mode-locking 12 2.2.4. Nonlinear polarization evolution (NPE) 13 2.3 Nonlinearities in optical fibers 14 2.3.1. Self-Phase modulation (SPM) 14 2.3.2. Stimulated Raman Scattering (SRS) 16 2.4 Pulse propagation in optical fiber 18 2.4.1. Basic concept 18 2.4.2. Nonlinear Schrödinger coupled-mode equation 21 2.5 Noise-like pulse (NLP) 22 2.5.1. Physical mechanism 22 2.5.2. Characteristics 24 2.6 Two photon absorption 25 2.6.1. Introduction 25 2.6.2. Photogenerated carrier density 25 Chapter 3 Generation of mode-locked and noise-like pulses 29 3.1 Dispersion-mapped fiber laser 29 3.1.1. System setup 29 3.1.2. Characteristics 31 3.1.3. Characteristics of different TPA signals 33 3.1.4. Power scaling of fiber laser 35 3.1.5. First stage amplifier 37 3.2 All normal dispersion fiber laser 38 3.2.1. Two-photon absorption of NLP 43 3.2.2. Characteristics of different TPA signals 44 3.2.3. First stage amplifier 47 Chapter 4 Calibration of Spectrometers 49 4.1 Check of spectrometers 49 4.2 Calibration of spectrometers 50 4.2.1. Step of calibrations 52 4.2.2. Results of calibration 55 4.3 Problems of calibrations 56 Chapter 5 Supercontinuum generated by noise-like pulse 57 5.1 Introduction 57 5.2 Simulation 57 5.3 Supercontinuum generation using ANDi fiber laser 62 5.3.1. The effect for supercontinuum generation in different pump power (ANDi laser) 62 5.3.2. The effect for supercontinuum generation in different TPA signal (ANDi fiber laser) 64 5.4 Supercontinuum generation using dispersion mapped fiber laser 65 5.5 Supercontinuum generation in photonic crystal fiber 68 5.5.1. The effect for supercontinuum generation in different pump power 68 5.5.2. The effect for supercontinuum generation in different TPA signal 70 5.6 Summary 71 Chapter 6 Conclusions and future works 72 6.1 Conclusions 72 References 73

    [1] A. Zaytsev, C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, and C.-L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Optics express, vol. 21, no. 13, pp. 16056-16062, 2013.
    [2] Y.-J. You, C. Wang, Y.-L. Lin, A. Zaytsev, P. Xue, and C.-L. Pan, "Ultrahigh-resolution optical coherence tomography at 1.3 μm central wavelength by using a supercontinuum source pumped by noise-like pulses," Laser Physics Letters, vol. 13, no. 2, p. 025101, 2015.
    [3] B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, "Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses," Optical Engineering, vol. 53, no. 5, pp. 051505-051505, 2014.
    [4] RP-Photonics. "Rare-earth-doped Gain Media." https://www.rp-photonics.com/rare_earth_doped_gain_media.html (accessed.
    [5] A. Govind P, Application of Nonlinear Fiber Opitcs, 2nd ed. Academic Press, 2008.
    [6] K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of Applied Physics, vol. 91, no. 2, p. 576, 2002, doi: 10.1063/1.1425445.
    [7] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," (in English), IEEE Journal of Quantum Electronics, vol. 33, no. 7, pp. 1049-1056, Jul 1997, doi: Doi 10.1109/3.594865.
    [8] C. Wandera, "Fiber Lasers in Material Processing," in Fiber Laser: InTech, 2016.
    [9] H. M. Pask et al., "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region," IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, no. 1, pp. 2-13, 1995, doi: 10.1109/2944.468377.
    [10] RP-Photonics. "Double-clad Fibers." https://www.rp-photonics.com/double_clad_fibers.html (accessed.
    [11] M. Javadimanesh, S. G. Sabouri, and A. Khorsandi, "The effect of cladding geometry on the absorption efficiency of double-clad fiber lasers," Optica Applicata, vol. 46, no. 2, 2016.
    [12] N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission-application to Nd:YAG lasers," Quantum Electronics, IEEE Journal of, vol. 35, no. 1, pp. 101-109, 1999, doi: 10.1109/3.737626.
    [13] W. E. Lamb, Jr., "Theory of an Optical Maser," Physical Review, vol. 134, no. 6A, pp. A1429-A1450, 06/15/ 1964. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRev.134.A1429.
    [14] H. A. Haus, "Mode-locking of lasers," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 6, no. 6, pp. 1173-1185, 2000, doi: 10.1109/2944.902165.
    [15] L. E. Hargrove, R. L. Fork, and M. A. Pollack, "Locking of He-Ne laser modes induced by synchronous intracavity modulation," Applied Physics Letters, vol. 5, no. 1, p. 4, 1964, doi: 10.1063/1.1754025.
    [16] Q. Bao et al., "Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers," Advanced Functional Materials, vol. 19, no. 19, pp. 3077-3083, 2009.
    [17] V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation," Electronics Letters, vol. 28, no. 15, pp. 1391-1393, 1992, doi: 10.1049/el:19920885.
    [18] F. Ö. Ilday, J. Buckley, L. Kuznetsova, and F. W. Wise, "Generation of 36-femtosecond pulses from a ytterbium fiber laser," Optics Express, vol. 11, no. 26, pp. 3550-3554, 2003.
    [19] T. Hirooka and M. Nakazawa, "Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion," Optics letters, vol. 29, no. 5, pp. 498-500, 2004.
    [20] B. Ortaç et al., "Generation of parabolic bound pulses from a Yb-fiber laser," Optics express, vol. 14, no. 13, pp. 6075-6083, 2006.
    [21] S. Kobtsev, S. Kukarin, and Y. Fedotov, "Ultra-low repetition rate mode-locked fiber laser with high-energy pulses," Optics Express, vol. 16, no. 26, pp. 21936-21941, 2008.
    [22] L. Zhao, D. Tang, T. Cheng, and C. Lu, "Nanosecond square pulse generation in fiber lasers with normal dispersion," Optics communications, vol. 272, no. 2, pp. 431-434, 2007.
    [23] F. Shimizu, "Frequency Broadening in Liquids by a Short Light Pulse," (in English), Physical Review Letters, vol. 19, no. 19, pp. 1097-1100, 11/06/ 1967, doi: DOI 10.1103/PhysRevLett.19.1097.
    [24] S. A. Planas, N. L. Mansur, C. H. Cruz, and H. L. Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers," Opt Lett, vol. 18, no. 9, pp. 699-701, May 1 1993. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/19802244.
    [25] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," (in English), Nature, vol. 121, no. 3048, pp. 501-502, Jan-Jun 1928, doi: Doi 10.1038/121501c0.
    [26] R. H. Stolen, A. R. Tynes, and E. P. Ippen, "Raman Oscillation in Glass Optical Waveguide," (in English), Applied Physics Letters, vol. 20, no. 2, pp. 62-64, 1972, doi: Doi 10.1063/1.1654046.
    [27] F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Physical Review Letters, vol. 92, no. 21, p. 213902, 05/27/ 2004. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.92.213902.
    [28] G. P. Agrawal, Nonlinear fiber optics, 4 ed. Academic Press, 2007.
    [29] R. Song, J. Hou, S. Chen, W. Yang, and Q. Lu, "High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier," Optics Letters, vol. 37, no. 9, pp. 1529-1531, 2012/05/01 2012, doi: 10.1364/OL.37.001529.
    [30] L. A. Vazquez-Zuniga and Y. Jeong, "Super-Broadband Noise-Like Pulse Erbium-Doped Fiber Ring Laser With a Highly Nonlinear Fiber for Raman Gain Enhancement," (in English), Ieee Photonic Tech L, vol. 24, no. 17, pp. 1549-1551, Sep 1 2012, doi: Doi 10.1109/Lpt.2012.2208451.
    [31] S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, "Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers," Opt Express, vol. 17, no. 23, pp. 20707-20713, 2009.
    [32] O. Pottiez, R. Grajales-Coutino, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, "Adjustable noiselike pulses from a figure-eight fiber laser," (in English), Appl Optics, vol. 50, no. 25, pp. E24-E31, Sep 1 2011, doi: Doi 10.1364/Ao.50.000e24.
    [33] S. Kobtsev and S. Smirnov, "Fiber lasers mode-locked due to nonlinear polarization evolution: golden mean of cavity length," Laser Physics, vol. 21, no. 2, pp. 272-276, 2011.
    [34] L. Zhao, D. Tang, J. Wu, X. Fu, and S. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Opt Express, vol. 15, no. 5, pp. 2145-2150, 2007.
    [35] M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," (in English), Opt Lett, vol. 22, no. 11, pp. 799-801, Jun 1 1997, doi: Doi 10.1364/Ol.22.000799.
    [36] S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, "Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation," (in English), Opt Express, vol. 20, no. 24, pp. 27447-27453, Nov 19 2012, doi: Doi 10.1364/Oe.20.027447.
    [37] D. Tang, L. Zhao, and B. Zhao, "Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser," Opt Express, vol. 13, no. 7, pp. 2289-2294, 2005/04/04 2005, doi: 10.1364/OPEX.13.002289.
    [38] C. Aguergaray, A. Runge, M. Erkintalo, and N. G. Broderick, "Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability," Optics letters, vol. 38, no. 15, pp. 2644-2646, 2013.
    [39] A. Boucon et al., "Noise-like pulses generated at high harmonics in a partially-mode-locked km-long Raman fiber laser," Applied Physics B, vol. 106, no. 2, pp. 283-287, 2012.
    [40] H. Lim, F. Ö. Ilday, and F. W. Wise, "Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser," Optics Letters, vol. 28, no. 8, pp. 660-662, 2003/04/15 2003, doi: 10.1364/OL.28.000660.
    [41] Nufern. "Specification of 10/125 NuGEN9 Precision Matched Active LMA Double Clad Fiber." http://www.nufern.com/pam/optical_fibers/2807/LMA-YDF-10/125-9M/ (accessed.
    [42] Skyeralaser. "Datasheet of 10W 915nm Uncooled Multimode Laser Diode Module." http://www.skyeralaser.com/products_show.asp?s_id=21 (accessed.
    [43] Lasfiberio. "Specification of Multimode Pump+Signal Combiner, MPSC (2+1)×1." http://www.lasfiberio.com/cn/product_info.php?id=13 (accessed.
    [44] Newport. "Specification of Broadband Polarizing Cube Beamsplitter, 900-1300 nm." https://www.newport.com/p/05FC16PB.7 (accessed.
    [45] CVI-Laser-Optics. "Specification of Zero Order Waveplates QWPO-1064-05-4." https://www.cvilaseroptics.com/qwpo-compound-zero-order-waveplates/product/qwpo_compound_zero_order_waveplates (accessed.
    [46] CASTECH. "Specification fo True Zero-Order Waveplates." http://www.castech.com/products_detail/productId=64.html (accessed.
    [47] Thorlabs. "Specification of Ruled Reflective Diffraction Grating, 600/mm." https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8627&pn=GR25-0610 (accessed.
    [48] A. K. Zaytsev, C. H. Lin, Y. J. You, F. H. Tsai, C. L. Wang, and C. L. Pan, "A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser," Laser Physics Letters, vol. 10, no. 4, p. 045104, 2013. [Online]. Available: http://stacks.iop.org/1612-202X/10/i=4/a=045104.
    [49] Electro-Optics-Technology. "Datasheet of InGaAs Photodetector." https://www.eotech.com/cart/19/photodetectors/ingaas-photodetectors/et-3000---ingaas-photodetector (accessed.
    [50] Teledyne-Lecroy. "Datasheet of Oscilloscope WaveRunner 610zi." http://teledynelecroy.com/oscilloscope/oscilloscopemodel.aspx?modelid=4781 (accessed.
    [51] Anritsu. "Datasheet of Optical Spectrum Analyzer (OSA) MS9740A." https://www.anritsu.com/zh-TW/test-measurement/products/ms9740a (accessed.
    [52] Y.-J. You, "Fiber-laser-generated noise-like pulses and their applications to supercontinuum generation and optical coherence tomography," Ph.D, 2016.
    [53] Y.-H. Teng, "Noise-like-pulse-generated visible-NIR
    supercontinuum white light source," p. 82, 2018.
    [54] "O. optics, "The specfication of Ocean optics (NIRQuest512-2.5)."."
    [55] "HL-3-INT-CAL-EXT https://oceanoptics.com/wp-content/uploads/hl3pluscal1.pdf."
    [56] W.-C. Chang, J.-H. Lin, T.-Y. Liao, and C.-Y. Yang, "Characteristics of noise-like pulse with broad bandwidth based on cascaded Raman scattering," Optics Express, vol. 26, no. 24, pp. 31808-31816, 2018/11/26 2018, doi: 10.1364/OE.26.031808.

    QR CODE