簡易檢索 / 詳目顯示

研究生: 何怡瑱
Ho Yi-Chen
論文名稱: 以桿狀病毒轉導老鼠關節軟骨細胞和人類間葉幹細胞以及在軟骨組織工程上之應用
Baculovirus gene transfer into rat articular chondrocytes and human mesenchymal stem cells: implication in articular tissue engineering
指導教授: 胡育誠
Hu Yu-Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 98
中文關鍵詞: 桿狀病毒軟骨細胞間葉幹細胞轉導效率組織工程
外文關鍵詞: baculovirus, chondrocyte, mesenchymal stem cell, transduction efficiency, tissue engineering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討桿狀病毒是否能有效的傳遞基因至老鼠關節軟骨細胞或人類間葉幹細胞(mesenchymal stem cells,MSC),並應用於軟骨組織工程之基因治療。我們首先利用帶有綠色螢光蛋白EGFP和CMV-IE啟動子的重組桿狀病毒(Bac-CE)探討轉軟骨細胞之轉導效率和外來基因表現。若以傳統方式(37 °C、MOI=200、以培養液為轉導環境溶液作用1小時)進行轉導,轉導效率相當低(< 5 %)。因此我們改變轉導條件(25 °C、以PBS作為轉導環境溶液作用8小時),轉導效率可提高至88 %並延長基因表現時間至21天。以此條件轉導(轉導時間為4小時)人類臍帶血(uMSC)和骨髓(bMSC)間葉幹細胞,效率可高達70 %以上。以即時定量聚合酶連鎖反應(Q-PCR)分析發現,在25 °C、以PBS作為轉導環境溶液、延長細胞和病毒作用的時間,能夠增加病毒進入細胞的基因含量,並有效的提升轉導效率、基因表現量及時間。轉導過之軟骨細胞和間葉幹細胞,其生長速率會因EGFP表現而減緩,但會隨病毒DNA含量和EGFP表現量遞減而逐漸回復,並且在轉導後軟骨細胞仍可正常分泌細胞外間質(醣胺素和第二型膠原蛋白),而MSC則可繼續分化成脂肪細胞。此外,利用重複轉導(super-transduction)和細胞重新繼代再轉導(re-transduction)方式,也有效的提升轉導效率和延長EGFP表現時間。
    更重要是,我們亦發現桿狀病毒可以轉導進入不同分化路徑(脂肪、軟骨和骨細胞)及分化階段(分化後第1、2、3和4週)的間葉組織的前驅細胞,在往脂肪細胞路徑分化後1週轉導有最高的轉導效率(90 %)和表現時間(41天)。其轉導效率和基因表現(時間)會隨前驅細胞分化路徑和分化階段有顯著的差異,依序為脂肪細胞>骨細胞>軟骨細胞,這些差異與培養基添加物(Dexamethasone或A酸)、細胞週期以及病毒進入細胞的基因數無關,而由egfp轉錄程度不同所致。以化學組織染色和反轉錄聚合酶連鎖反應(RT-PCR)分析,在多種不同分化階段之前驅細胞其分化能力仍不受病毒轉導影響。綜合上述,桿狀病毒可以有效傳遞基因至老鼠關節軟骨細胞和人類間葉幹細胞並做為軟骨組織工程之基因治療載體。


    To assess the potential of baculovirus as a gene delivery vector for cartilage tissue engineering, a recombinant baculovirus expressing enhanced green fluorescent protein (EGFP) was constructed to transduce rat articular chondrocytes and human mesenchymal stem cells (MSCs). Using the traditional transduction protocol (incubating the cells with concentrated virus at a multiplicity of infection (MOI) 200 for 1 h), the gene delivery efficiency into chondrocyte was low (<5 %). Therefore, a modified protocol was adopted (incubating cells with unconcentrated virus for 8 h with PBS as surrounding solution), which markedly enhanced the efficiency (88 %) and prolonged the duration of expression (21 days). Using the transduction condition we developed, MSCs were transduced at efficiencies up to 70 %. The elevated efficiency, gene expression level and duration correlated well with the increased virus uptake upon extended incubation time at 25 C. Although the virus transduction somewhat hindered the cell proliferation due to EGFP overexpression and the accompanying metabolic burden, the growth rate could restore when the burden was relived in the long-term culture. More importantly, the virus transduction imposed no perceptible cytotoxicity and the chondrocytes could secrete articular cartilage-specific type II collagen and glycosaminoglycan as well as mock-transduction cells did. Additionally, baculovirus-transduced MSC remained capable of differentiating into adipocytes.
    Furthermore, baculovirus could transduce MSC progenitor cells differentiating into different lineages (adipogenic, chondrogenic and osteogenic) at different differentiation stages (1, 2, 3 and 4 weeks post-induction). For MSC induced into adipogenic pathway, the transduction at 1 week post-induction resulted in an efficiency of up to 90 % and a duration of transgene expression for up to 41 days. Notably, the transduction efficiencies and transgene expression durations varied with the differentiation lineage and differentiation stages. The variation in transgene expression was independent of the cell cycle and virus entry, but resulted from the differential efgp transcription in the progenitors differentiating along different pathways. The differentiation capacities of MSC progenitors were not influenced by baculovirus transduction, as demonstrated by histochemistry staining and reverse transcription PCR (RT-PCR). These data collectively confirmed that baculovirus enables highly efficient gene transfer into rat articular chondrocytes and human MSCs, but does not impair the normal proliferation and differentiation capability of the transduced cells, suggesting that baculovirus expressing growth factors may be used to genetically modify, and modulate the differentiation status of chondrocytes and MSCs.

    摘要 I Abstract II 目錄 IV 表目錄 VIII 圖目錄 IX 第一章□序論 1 第二章□文獻回顧 3 2-1 桿狀病毒/昆蟲細表現系統 3 2-1-1 桿狀病毒分類與結構 3 2-1-2 桿狀病毒與昆蟲細胞系統 3 2-2 桿狀病毒/哺乳動物細胞表現系統 5 2-3 軟骨組織工程 7 2-4 幹細胞的特性與在組織工程上之應用 9 2-5 研究動機 11 第三章□實驗材料與方法 16 3-1重組桿狀病毒之建構與製備 16 3-1-1 昆蟲細胞與培養基 16 3-1-2 重組桿狀病毒之製備 16 3-2 細胞來源與分化 17 3-2-1 老鼠關節軟骨細胞來源與培養 17 3-2-2 人類間葉幹細胞(mesenchymal stem cell,MSC)之分離與誘導分化為脂肪細胞(adipocyte)、軟骨細胞(chondrocyte)及骨細胞(osteocyte) 17 3-2-3 MSC之組織染色法分析 19 3-3 桿狀病毒轉導哺乳動物細胞之策略 20 3-3-1 桿狀病毒轉導細胞之策略 20 3-3-2 MSC往不同路徑分化之轉導方式 21 3-4 實驗分析方法 21 3-4-1 流式細胞儀之分析 21 3-4-2 細胞RNA之分離 22 3-4-3 反轉錄聚合酶連鎖反應(Reverse Transcription Polymerase Chain Reaction,RT-PCR) 22 3-4-4 即時定量聚合酶連鎖反應(Quantitative Real-Time Polymerase Chain Reaction,Q-PCR)分析 23 第四章□結果與討論(1)-桿狀病毒轉導老鼠關節軟骨與人類間葉幹細胞之探討 29 4-1桿狀病毒轉導哺乳動物細胞之轉導條件最佳化-以老鼠關節軟骨細胞為例 29 4-1-1 老鼠關節軟骨細胞對桿狀病毒之感受性 29 4-1-2 轉導環境溶液之影響 30 4-1-3 轉導溫度之影響 31 4-1-4 轉導時間之影響 33 4-2桿狀病毒轉導人類MSC之探討 36 4-2-1 不同來源MSC對桿狀病毒的感受性 36 4-2-2 不同轉導策略對病毒基因傳遞之影響 37 4-2-3 MSC細胞密度對轉導效率之影響 37 4-3桿狀病毒對於不同代數哺乳動物細胞轉導效率之影響 38 4-4桿狀病毒轉導對哺乳動物細胞生長曲線之分析 38 4-4-1 桿狀病毒轉導對老鼠關節軟骨細胞生長曲線之分析 39 4-4-2 桿狀病毒轉導對人類MSC生長曲線之分析 40 4-5 桿狀病毒轉導老鼠關節軟骨細胞和人類MSC之分化能力分析 40 4-5-1 桿狀病毒轉導老鼠關節軟骨細胞之細胞外間質(第二型膠原蛋白和醣胺素)分析 40 4-5-2 桿狀病毒轉導對人類MSC分化(脂肪細胞、軟骨細胞和骨細胞)之影響 41 4-6 哺乳動物細胞長期培養後,轉導效率的提升與基因表現的延長 41 4-6-1 丁酸鈉對轉導效率和基因表現之影響 42 4-6-2 重複轉導(super-transduction)對轉導效率和基因表現之影響 43 4-6-3 細胞重新繼代再轉導(re-transduction)對轉導效率和基因表現之影響 43 第五章 結果與討論(2)-轉導效率與細胞分化狀態之關聯性 45 5-1 人類MSC分化能力與轉導效率之探討 45 5-1-1 細胞代數對MSC分化能力之影響 45 5-1-2人類MSC往不同分化路徑(differentiation pathway)及不同分化狀態(differentiation status)經桿狀病毒轉導之轉導效率和螢光表現之分析 46 5-2 桿狀病毒轉導對人類MSC分化能力之分析 47 5-3 桿狀病毒轉導對人類MSC往不同路徑分化和不同分化狀態下,基因表現差異之分析 48 5-3-1 培養基添加物對基因表現之影響 49 5-3-2 細胞週期對基因表現之影響 51 5-3-3 桿狀病毒進入MSC往不同路徑分化和不同分化狀態之基因含量對基因表現之影響 52 5-3-4 egfp基因轉錄程度對基因表現之影響 52 第六章□結論 55 6-1 桿狀病毒轉導老鼠關節軟骨細胞之最佳化轉導條件及轉導後對細胞之影響 55 6-2 桿狀病毒轉導人類MSC及轉導後對細胞之影響 56 6-3 桿狀病毒轉導人類MSC往不同分化路徑和不同分化狀態細胞之探討 56 6-4 桿狀病毒轉導關節軟骨細胞和人類間葉幹細胞對基因表現之探討 57 第七章□未來展望 58 7-1 影響轉導效率和外來基因表現之探討 58 7-1-1 轉錄因子(Transcription factors) 58 7-1-2 轉譯修飾(transcription modification) 59 7-2 桿狀病毒轉導往肌肉前驅細胞分化的MSC和老鼠C2C12細胞之探討 60 參考文獻 90 表目錄 表3-1、幹細胞分化成脂肪、軟骨和骨前驅細胞之標的引。 23 表3-2、幹細胞分化成脂肪、軟骨和骨細胞之PCR之反應條件。 23 表4-1、轉導環境溶液對轉導效率之影響。 31 表4-2、桿狀病毒在PBS轉導環境溶液中,溫度和病毒半生期之關係。 33 表4-3、不同轉導時間和EGFP表現時間之關係。 35 表5-1、不同前驅細胞經病毒轉導後EGFP的表現時間。 47 表5-2、Dexamethasone對轉導效率之影響。 51 表7-1、肌母細胞引子設計。 61 圖目錄 圖2-1、桿狀病毒的分類。 12 圖2-2、出芽型和封埋體之桿狀病毒型態。 13 圖2-3、核多角體病毒感染週期(infection cycle)模式圖。 14 圖2-4、MSC往不同細胞分化路徑之示意圖 15 圖3-1、pBac-CMV-EGFP簡稱Bac-CE的建構圖。 25 圖3-2、骨髓(bMSC)和臍帶血(uMSC)幹細胞之免疫顯型分析。 26 圖3-3、桿狀病毒轉導哺乳動物細胞之轉導策略。 27 圖3-4、MSC分化成不同前驅細胞,在不同分化階段經病毒轉導及組織染色之示意圖。 28 圖4-1、軟骨細胞對桿狀病毒之感受性測試。 62 圖4-2、骨細胞在不同轉導溫度(4、25和37 □C)及不同轉導環境溶液 (DMEM、DMEM含10 % FBS、TNM-FH、TNM-FH含10 % FBS和PBS)對轉導效率之影響。 63 圖4-3、在27 °C、不同環境溶液中,病毒活性隨時間變化之情形。 64 圖4-4、以PBS為轉導環境溶液,探討溫度效應對病毒活性的影響。 65 圖4-5、在25 □C、以PBS為轉導環境溶液下,延長桿狀病毒和細胞的轉導時間對轉導效率與egfp基因數的影響。 66 圖4-6、在25 □C、以PBS為轉導環境溶液下,延長桿狀病毒和軟骨細胞的轉導時間對轉導效率、總螢光表現量和egfp基因隨時間變化的情形。 67 圖4-7、桿狀病毒對於人類臍帶血(A、B)與骨髓MSC(C、D)之感受性測試。 68 圖4-8、bMSC在不同轉導環境溶液和轉導溫度下,桿狀病毒進入細胞內基因含量之比較。 69 圖4-9、轉導效率與bMSC之細胞密度關係。 70 圖4-10、不同代數之軟骨細胞對桿狀病毒之感受性測試。 71 圖4-11、不同代數之uMSC對桿狀病毒之感受性測試。 72 圖4-12、比較桿狀病毒轉導、假性轉導和未轉導軟骨細胞之生長曲線。 73 圖4-13、bMSC經桿狀病毒作用後之生長曲線分析。 74 圖4-14、軟骨細胞經桿狀病毒轉導後之細胞外間質分析。 75 圖4-15、人類bMSC經桿狀病毒轉導往脂肪細胞分化之分析。 76 圖4-16、丁酸鈉和EGTA對軟骨細胞表現EGFP的影響。 77 圖4-17、軟骨細胞經重複轉導後,轉導效率和總螢光表現量隨時間變化的情形。 78 圖4-18、軟骨細胞和bMSC經桿狀病毒重複轉導(A和B)和細胞重新繼代再轉導(C和D)對於轉導效率和平均螢光之影響。 79 圖5-1、以組織染色法和RT-PCR檢測bMSC分化成多種細胞的能力。 80 圖5-2、以桿狀病毒轉導往不同分化路徑和在不同分化階段的bMSC細胞。 81 圖5-3、往不同分化路徑(脂肪細胞、軟骨細胞和骨細胞)和在不同分化階段(誘導後第1、2、3和4週)之bMSC細胞,經桿狀病毒轉導後之轉導效率(A)和平均螢光強度(B)之關係。 82 圖5-4、bMSC往不同分化路徑和不同分化階段經桿狀病毒轉導後,於誘導分化第5週利用組織染色法和RT-PCR檢測細胞分化之能力。 83 圖5-5、bMSC往骨細胞分化,在不同分化階段以低桿狀病毒劑量和vBac-HB轉導後之分化能力分析。 84 圖5-6、丁酸鈉和RA對bMSC往不P路徑分化後1週,桿狀病毒轉導細胞之EGFP表現情形。 85 圖5-7、bMSC 往脂肪細胞、軟骨細胞和骨細胞分化,在不同誘導分化階段(誘導後第1、2、3和4週),以流式細胞儀分析桿狀病毒轉導前和轉導後之細胞週期變化。 86 圖5-8、bMSC往脂肪細胞(●)、軟骨細胞(○)和骨細胞(▼)路徑分化,在不同誘導分化階段(誘導後第1、2、3和4週)桿狀病毒進入細胞之egfp基因數分析。 87 圖5-9、bMSC往不同路徑(脂肪細胞、軟骨細胞和骨細胞)分化,在誘導分化第1 週之egfp轉譯程度和總螢光表現量之分析。 88 圖5-10、在不同濃度(0、10、100 ng/ml)TGF-β1生長因子作用下,轉導效率(A)和平均螢光強度(B)隨培養時間變化之情形。 89

    Aaron RK, Wang S, Ciombor DM. 2002. Upregulation of basal TGFbeta1 levels by EMF coincident with chondrogenesis--implications for skeletal repair and tissue engineering. J Orthop Res 20:233-40.
    Airenne KJ, Hiltunen MO, Turunen MP, Turunen AM, Laitinen OH, Kulomaa MS, Yla-Herttuala S. 2000. Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther 7:1499-1504.
    Akahane M, Kuriyama S, Ohgushi H, Akahane T, Kawamura K, Watanabe S, Funakoshi F, Yoshiji H, Ikenaka K, Takakura Y. 2002. Enhancing and suppressing effects of dexamethasone on transgene expression in vitro. Int J Mol Med 10:107-12.
    Allay JA, Dennis JE, Haynesworth SE, Majumdar MK, Clapp DW, Shultz LD, Caplan AI, Gerson SL. 1997. LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Hum Gene Ther 8:1417-27.
    Bajaj B, Lei P, Andreadis ST. 2001. High efficiencies of gene transfer with immobilized recombinant retrovirus: kinetics and optimization. Biotechnol Prog 17:587-96.
    Barry F, Boynton RE, Liu B, Murphy JM. 2001. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268:189-200.
    Bhagavati S, Xu W. 2004. Isolation and enrichment of skeletal muscle progenitor cells from mouse bone marrow. Biochem Biophys Res Commun 318:119-24.
    Bilello JP, Cable EE, Myers RL, Isom HC. 2003. Role of paracellular junction complexes in baculovirus-mediated gene transfer to nondividing rat hepatopytes. Gene Ther 10:733-749.
    Bilello JP, Delaney WE, Boyce FM, Isom HC. 2001. Transient disruption of intercellular junctions enables baculovirus entry into nondividing hepatocytes. J Virol 75:9857-9871.
    Bost F, Caron L, Marchetti I, Dani C, Le Marchand-Brustel Y, Binetruy B. 2002. Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J 361:621-7.
    Boyce FM, Bucher NLR. 1996. Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci USA 93:2348-2352.
    Brooks AR, Harkins RN, Wang P, Qian HS, Liu P, Rubanyi GM. 2004. Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 6:395-404.
    Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S. 1998. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 16:155-162.
    Caplan AI, Bruder SP. 2001. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259-64.
    Chan J, O'Donoghue K, de la Fuente J, Roberts IA, Kumar S, Morgan JE, Fisk NM. 2005. Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 23:93-102.
    Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Ganan Y, Macias D, Merino R, Hurle JM. 2003. Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. Dev Biol 257:292-301.
    Cho SH, Oh CD, Kim SJ, Kim IC, Chun JS. 2003. Retinoic acid inhibits chondrogenesis of mesenchymal cells by sustaining expression of N-cadherin and its associated proteins. J Cell Biochem 89:837-47.
    Chuah MK, Van Damme A, Zwinnen H, Goovaerts I, Vanslembrouck V, Collen D, Vandendriessche T. 2000. Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and transient production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice. Hum Gene Ther 11:729-38.
    Chung Y-C, Liu H-J, Hu Y-C. 2004. Facile monitoring of avian reovirus sB expression and purification processes by tagged green fluorescent protein. Enzyme Microb Technol 35:494-500.
    Condreay JP, Witherspoon SM, Clay WC, Kost TA. 1999. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci USA 96:127-132.
    Conget PA, Minguell JJ. 1999. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67-73.
    Conget PA, Minguell JJ. 2000. Adenoviral-mediated gene transfer into ex vivo expanded human bone marrow mesenchymal progenitor cells. Exp Hematol 28:382-90.
    de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W. 2000. Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19:389-94.
    de Crombrugghe B, Lefebvre V, Nakashima K. 2001. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol 13:721-7.
    Devine SM, Bartholomew AM, Mahmud N, Nelson M, Patil S, Hardy W, Sturgeon C, Hewett T, Chung T, Stock W and others. 2001. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29:244-255.
    Ding LM, Saylors R, Munshi NC. 1995. The stromal cell as a vehicle for ex vivo gene transfer. Blood 86:1625-1625.
    Duisit G, Saleun S, Douthe S, Barsoum J, Chadeuf G, Moullier P. 1999. Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells. J Gene Med 1:93-102.
    Dwarakanath RS, Clark CL, McElroy AK, Spector DH. 2001. The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts. Virology 284:297-307.
    Erices A, Conget P, Minguell JJ. 2000. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235-42.
    Etheridge SL, Spencer GJ, Heath DJ, Genever PG. 2004. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 22:849-60.
    Fajas L, Fruchart JC, Auwerx J. 1998. Transcriptional control of adipogenesis. Curr Opin Cell Biol 10:165-73.
    Fernandez-Lloris R, Vinals F, Lopez-Rovira T, Harley V, Bartrons R, Rosa JL, Ventura F. 2003. Induction of the Sry-related factor SOX6 contributes to bone morphogenetic protein-2-induced chondroblastic differentiation of C3H10T1/2 cells. Mol Endocrinol 17:1332-43.
    Ferry N, Duplessis O, Houssin D, Danos O, Heard JM. 1991. Retroviral-mediated gene transfer into hepatocytes in vivo. Proc Natl Acad Sci USA 88:8377-81.
    Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H. 2005. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem 280:8343-50.
    Gazit D, Turgeman G, Kelley P, Wang E, Jalenak M, Zilberman Y, Moutsatsos I. 1999. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: A novel cell-mediated gene therapy. J Gene Med 1:121-133.
    Ghosh S, Parvez MK, Banerjee K, Sarin SK, Hasnain SE. 2002. Baculovirus as mammalian cell expression vector for gene therapy: an emerging strategy. Mol Ther 6:5-11.
    Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J and others. 2004. Differences between human and mouse embryonic stem cells. Dev Biol 269:360-80.
    Gregoire FM, Smas CM, Sul HS. 1998. Understanding adipocyte differentiation. Physiol Rev 78:783-809.
    He B, Weber GF. 2004. Synergistic activation of the CMV promoter by NF-kappaB P50 and PKG. Biochem Biophys Res Commun 321:13-20.
    Heng BC, Cao T, Lee EH. 2004a. Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells 22:1152-67.
    Heng BC, Cao T, Stanton LW, Robson P, Olsen B. 2004b. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res 19:1379-94.
    Ho YC, Chen HC, Wang KC, Hu YC. 2004. Highly efficient baculovirus-mediated gene transfer into rat chondrocytes. Biotechnol Bioeng 88:643-51.
    Ho YC, Chung YC, Hwang SM, Wang KC, Hu YC. 2005. Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells. J Gene Med 7:860-8.
    Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M. 1995. Efficient gene-transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci USA 92:10099-10103.
    Hsu CS, Ho YC, Wang KC, Hu YC. 2004. Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol Bioeng 88:42-51.
    Hu YC, Tsai CT, Chang YJ, Huang JH. 2003a. Enhancement and prolongation of baculovirus-mediated expression in mammalian cells: focuses on strategic infection and feeding. Biotechnol Prog 19:373-9.
    Hu YC, Tsai CT, Chung YC, Lu JT, Hsu JTA. 2003b. Generation of chimeric baculovirus with histidine-tags displayed on the envelope and its purification using immobilized metal affinity chromatography. Enzyme Microb Technol 33:445-452.
    Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH. 2002. Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 20:249-58.
    Hung SC, Lu CY, Shyue SK, Liu HC, Ho LL. 2004. Lineage differentiation-associated loss of adenoviral susceptibility and Coxsackie-adenovirus receptor expression in human mesenchymal stem cells. Stem Cells 22:1321-9.
    Hurwitz DR, Kirchgesser M, Merrill W, Galanopoulos T, McGrath CA, Emami S, Hansen M, Cherington V, Appel JM, Bizinkauskas CB and others. 1997. Systemic delivery of human growth hormone or human factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells. Hum Gene Ther 8:137-56.
    Ikenoue T, Trindade MC, Lee MS, Lin EY, Schurman DJ, Goodman SB, Smith RL. 2003. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J Orthop Res 21:110-6.
    Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, Tanaka J, Bunyaratvej A. 2004. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 320:914-9.
    Jaalouk DE, Eliopoulos N, Couture C, Mader S, Galipeau J. 2000. Glucocorticoid-inducible retrovector for regulated transgene expression in genetically engineered bone marrow stromal cells. Hum Gene Ther 11:1837-49.
    Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF. 2000. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645-52.
    Kay MA, Rothenberg S, Landen CN, Bellinger DA, Leland F, Toman C, Finegold M, Thompson AR, Read MS, Brinkhous KM. 1993. In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs. Science 262:117-9.
    Kost TA, Condreay JP. 1999. Recombinant baculoviruses as expression vectors for insect and mammalian cells. Current Opinion in Biotechnology 10:428-433.
    Kost TA, Condreay JP. 2002. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol 20:173-80.
    Kougias P, Chai H, Lin PH, Yao Q, Lumsden AB, Chen C. 2005. Effects of adipocyte-derived cytokines on endothelial functions: implication of vascular disease. J Surg Res 126:121-9.
    Le Doux JM, Davis HE, Morgan JR, Yarmush ML. 1999. Kinetics of retrovirus production and decay. Biotechnol Bioeng 63:654-62.
    Lee CI, Kohn DB, Ekert JE, Tarantal AF. 2004. Morphological analysis and lentiviral transduction of fetal monkey bone marrow-derived mesenchymal stem cells. Mol Ther 9:112-23.
    Lee K, Majumdar MK, Buyaner D, Hendricks JK, Pittenger MF, Mosca JD. 2001. Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol Ther 3:857-866.
    Lee SG, Kim S, Robbins PD, Kim BG. 1996. Optimization of environmental factors for the production and handling of recombinant retrovirus. Appl Microbiol Biotechnol 45:477-83.
    Leisy DJ, Lewis TD, Leong JA, Rohrmann GF. 2003. Transduction of cultured fish cells with recombinant baculoviruses. J Gen Virol 84:1173-8.
    Lewis TS, Shapiro PS, Ahn NG. 1998. Signal transduction through MAP kinase cascades. Adv Cancer Res 74:49-139.
    Li Y, Tew SR, Russell AM, Gonzalez KR, Hardingham TE, Hawkins RE. 2004. Transduction of passaged human articular chondrocytes with adenoviral, retroviral, and lentiviral vectors and the effects of enhanced expression of SOX9. Tissue Eng 10:575-84.
    Liu L, DiGirolamo CM, Navarro PA, Blasco MA, Keefe DL. 2004. Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res 294:1-8.
    Liu P, Kalajzic I, Stover ML, Rowe DW, Lichtler AC. 2001. Human bone marrow stromal cells are efficiently transduced by vesicular stomatitis virus-pseudotyped retrovectors without affecting subsequent osteoblastic differentiation. Bone 29:331-5.
    Long MW. 2001. Osteogenesis and bone-marrow-derived cells. Blood Cells Mol Dis 27:677-90.
    Loser P, Jennings GS, Strauss M, Sandig V. 1998. Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB. J Virol 72:180-90.
    Ma L, Tamarina N, Wang Y, Kuznetsov A, Patel N, Kending C, Hering BJ, Philipson LH. 2000. Baculovirus-mediated gene transfer into pancreatic islet cells. Diabetes 49:1986-1991.
    Madry H, Padera R, Seidel J, Langer R, Freed LE, Trippel SB, Vunjak-Novakovic G. 2002. Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum Gene Ther 13:1621-1630.
    Majumdar MK, Jaiswal N, Mackay AM, Pittenger MF, Bruder SP, Mosca JD. 1997. High efficiency gene transfer into mesenchymal stem cells (MSCs) and maintenance of transgene expression with differentiation. Blood 90:4617-4617.
    Makhijani NS, Bischoff DS, Yamaguchi DT. 2005. Regulation of proliferation and migration in retinoic acid treated C3H10T1/2 cells by TGF-beta isoforms. J Cell Physiol 202:304-13.
    Marx JC, Allay JA, Persons DA, Nooner SA, Hargrove PW, Kelly PF, Vanin EF, Horwitz EM. 1999. High-efficiency transduction and long-term gene expression with a murine stem cell retroviral vector encoding the green fluorescent protein in human marrow stromal cells. Hum Gene Ther 10:1163-1173.
    Mason JM, Breitbart AS, Barcia M, Porti D, Pergolizzi RG, Grande DA. 2000. Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop Rel Res S171-S178.
    Morgan JR, LeDoux JM, Snow RG, Tompkins RG, Yarmush ML. 1995. Retrovirus infection: effect of time and target cell number. J Virol 69:6994-7000.
    Mori-Akiyama Y, Akiyama H, Rowitch DH, de Crombrugghe B. 2003. Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proc Natl Acad Sci USA 100:9360-5.
    Ng LJ, Wheatley S, Muscat GE, Conway-Campbell J, Bowles J, Wright E, Bell DM, Tam PP, Cheah KS, Koopman P. 1997. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 183:108-21.
    Nixon AJ, Brower-Toland BD, Bent SJ, Saxer RA, Wilke MJ, Robbins PD, Evans CH. 2000. Insulin-like growth factor-I gene therapy applications for cartilage repair. Clin Orthop Rel Res 379 (suppl):S201-S213.
    Oberfield JL, Collins JL, Holmes CP, Goreham DM, Cooper JP, Cobb JE, Lenhard JM, Hull-Ryde EA, Mohr CP, Blanchard SG and others. 1999. A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. Proc Natl Acad Sci USA 96:6102-6.
    Olmsted-Davis EA, Gugala Z, Gannon FH, Yotnda P, McAlhany RE, Lindsey RW, Davis AR. 2002. Use of a chimeric adenovirus vector enhances BMP2 production and bone formation. Hum Gene Ther 13:1337-1347.
    Petit VA, Edidin M. 1974. Lateral phase separation of lipids in plasma membranes: effect of temperature on the mobility of membrane antigens. Science 184:1183-5.
    Pieroni L, Maione D, La Monica N. 2001. In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors. Hum Gene Ther 12:871-881.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284:143-7.
    Porter RM, Huckle WR, Goldstein AS. 2003. Effect of dexamethasone withdrawal on osteoblastic differentiation of bone marrow stromal cells. J Cell Biochem 90:13-22.
    Quintavalla J, Uziel-Fusi S, Yin J, Boehnlein E, Pastor G, Blancuzzi V, Singh HN, Kraus KH, O'Byrne E, Pellas TC. 2002. Fluorescently labeled mesenchymal stem cells (MSCs) maintain multilineage potential and can be detected following implantation into articular cartilage defects. Biomaterials 23:109-19.
    Risbud MV, Sittinger M. 2002. Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol 20:351-6.
    Rundle CH, Miyakoshi N, Kasukawa Y, Chen ST, Sheng MHC, Wergedal JE, Lau KHW, Baylink DJ. 2003. In vivo bone formation in fracture repair induced by direct retroviral-based gene therapy with bone morphogenetic protein-4. Bone 32:591-601.
    Ryden M, Dicker A, Gotherstrom C, Astrom G, Tammik C, Arner P, Le Blanc K. 2003. Functional characterization of human mesenchymal stem cell-derived adipocytes. Biochem Biophys Res Commun 311:391-7.
    Sandig V, Hofmann C, Steinert S, Jennings G, Schlag P, Strauss M. 1996. Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum Gene Ther 7:1937-1945.
    Sarkis C, Serguera C, Petres S, Buchet D, Ridet JL, Edelman L, Mallet J. 2000. Efficient transduction of neural cells in vitro and in vivo by a baculovirus-derived vector. Proc Natl Acad Sci USA 97:14638-14643.
    Schwarz EJ, Alexander GM, Prockop DJ, Azizi SA. 1999. Multipotential marrow stromal cells transduced to produce L-DOPA: engraftment in a rat model of Parkinson disease. Hum Gene Ther 10:2539-49.
    Seidman MA, Hogan SM, Wendland RL, Worgall S, Crystal RG, Leopold PL. 2001. Variation in adenovirus receptor expression and adenovirus vector-mediated transgene expression at defined stages of the cell cycle. Mol Ther 4:13-21.
    Sekiya I, Tsuji K, Koopman P, Watanabe H, Yamada Y, Shinomiya K, Nifuji A, Noda M. 2000. SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem 275:10738-44.
    Shoji I, Aizaki H, Tani H, Ishii K, Chiba T, Saito I, Miyamura T, Matsuura Y. 1997. Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol 78:2657-2664.
    Sollerbrant K, Elmen J, Wahlestedt C, Acker J, Leblois-Prehaud H, Latta-Mahieu M, Yeh P, Perricaudet M. 2001. A novel method using baculovirus-mediated gene transfer for production of recombinant adeno-associated virus vectors. J Gen Virol 82:2051-60.
    Tew SR, Li Y, Pothacharoen P, Tweats LM, Hawkins RE, Hardingham TE. 2005. Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthritis Cartilage 13:80-9.
    Tsuchiya H, Kitoh H, Sugiura F, Ishiguro N. 2003. Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 301:338-43.
    Tsuda H, Wada T, Ito Y, Uchida H, Dehari H, Nakamura K, Sasaki K, Kobune M, Yamashita T, Hamada H. 2003a. Efficient BMP2 gene transfer and bone formation of mesenchymal stem cells by a fiber-mutant adenoviral vector. Mol Ther 7:354-365.
    Tsuda M, Takahashi S, Takahashi Y, Asahara H. 2003b. Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J Biol Chem 278:27224-9.
    Verma IM, Somia N. 1997. Gene therapy -- promises, problems and prospects. Nature 389:239-42.
    Wang KC, Wu JC, Chung YC, Ho YC, Chang MD, Hu YC. 2005. Baculovirus as a highly efficient gene delivery vector for the expression of hepatitis delta virus antigens in mammalian cells. Biotechnol Bioeng 89:464-73.
    Wechuck JB, Ozuer A, Goins WF, Wolfe D, Oligino T, Glorioso JC, Ataai MM. 2002. Effect of temperature, medium composition, and cell passage on production of herpes-based viral vectors. Biotechnol Bioeng 79:112-119.
    Wu D, Razzano P, Grande DA. 2003. Gene therapy and tissue engineering in repair of the musculoskeletal system. J Cell Biochem 88:467-481.
    Zakany R, Szijgyarto Z, Matta C, Juhasz T, Csortos C, Szucs K, Czifra G, Biro T, Modis L, Gergely P. 2005. Hydrogen peroxide inhibits formation of cartilage in chicken micromass cultures and decreases the activity of calcineurin: implication of ERK1/2 and Sox9 pathways. Exp Cell Res 305:190-9.
    Zhang XY, La Russa VF, Bao L, Kolls J, Schwarzenberger P, Reiser J. 2002. Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol Ther 5:555-565.
    Zhang XY, La Russa VF, Reiser J. 2004. Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J Virol 78:1219-29.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE