研究生: |
麥玄穎 Mai, Hsuan-Ying |
---|---|
論文名稱: |
雷射干涉微影曝光振動缺陷之分析與改善方法研究 Analysis and Cancellation method of Laser interference lithography Vibration defects caused by environment Vibration |
指導教授: |
傅建中
Fu, Chien-Chung |
口試委員: |
宋震國
Sung, Cheng-Kuo 藍宇彬 Lan, Yu-Pin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 雷射干涉微影 、莫爾條紋 、截波器 、抑振 |
外文關鍵詞: | laser interference lithography, Moire pattern, optical chopper, vibration |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷射干涉微影(Laser interference lithography)為一種利用光干涉原理進行微影的技術,雷射干涉微影具有不需光罩、成本低、線寬小且可以一次進行大面積曝光等優點。雷射干涉微影在製作奈米級週期性結構的微影方法中是非常具競爭力的,且雷射干涉微影系統依分光方式可分為兩種,分別為振幅分割法與波前分割法。
本實驗室致力於雷射干涉微影系統開發已有一段時間,除了多次曝光系統與多光束系統設計外,本實驗室也投入研究能夠提升產能或良率之裝置,如雷射平坦化系統、消色差曝光系統及光形監控系統等等,本實驗室在發展相關的產能和良率增進模組後,在實驗中仍發現環境振動造成之缺陷存在,為了能夠使產能和良率再提升,本研究旨在對環境振動造成之缺陷進行分析與抑制。
本研究將此類缺陷定義為莫爾條紋缺陷,且依據其振動方向不同分為旋轉莫爾條紋缺陷(Moiré of rotated pattern)與平行莫爾條紋缺陷(Moiré of parallel pattern),在本研究中主要針對在實驗中較常出現的旋轉莫爾條紋缺陷進行分析與消除,為了重現旋轉莫爾條紋缺陷,本研究利用壓電平台作為模擬的振動源推動曝光平台進行微影製程,利用給定不同振幅製造出不同週期之莫爾條紋並進行分析。接著為了能夠成功的消除旋轉莫爾條紋缺陷,本研究利用截波器系統搭配適當空占比的扇葉進行振動訊號的振幅遮擋以消除旋轉莫爾條紋缺陷,期望利用此套系統解決環境振動對於雷射干涉微影曝光結果之影響。
The main advantages of laser interference lithography (LIL) are a simple optical system with no mask requirements and a large patterning area in a single exposure. These characteristics make LIL suitable for creating nanoscale periodic structures. However, the exposure process in LIL is very sensitive, and therefore, defects can be caused even by slight environmental vibrations.
Environmental vibrations, such as those caused by a fan filter unit or cooling fan, cannot be avoided. Therefore, this study analyzed the type of defects that can occur in LIL; the defects are categorized into vertical moiré fringe defects and parallel moiré fringe defects. On the basis of the aforementioned defects, we defined the allowable vibration angle for an exposure area of a certain size to avoid defects.
In addition, we propose a method for eliminating the environmental vibrations. To ensure reproducible defects, we used specific vibration sources in a piezo stage to perform the exposure process. Subsequently, we used an optical chopper system to modulate light from a continuous laser beam. The frequencies of the chopping laser beam and the vibration signals were matched to eliminate the vibrations and thereby improve the yield of the exposure process.
1. Wilson, B.; Available from: http://cnx.org/contents/zcjP278@11/Photolithography.
2. Wu, C.S., C.D. Chen, and Y. Makiuchi, High-energy Electron Beam Lithography for Nanoscale Fabrication. 2010: INTECH Open Access Publisher.
3. TOPPAN. Semiconductor-related Products Nanoimprint Mold. 2016; Available from: http://www.toppan.co.jp/electronics/english/semicon/nano_in_print/.
4. Xie, Q., et al., Fabrication of nanostructures with laser interference lithography. Journal of Alloys and Compounds, 2008. Volume 449(Issues 1–2): p. Pages 261–264.
5. Chang, A.B.a.C.-H., Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd’s mirror interference lithography. OPTICS LETTERS, 2013. Vol. 38(Issue 14).
6. Johannes de Boor, N.G., Jörg V Wittemann, Ulrich Gösele and Volker Schmidt, Sub-100 nm silicon nanowires by laser interference lithography and metal-assistedetching. NANOTECHNOLOGY, 2010.
7. Johannes de Boor, N.G., Ulrich Gösele, and Volker Schmidt, Three-beam interference lithography: upgrading a Lloyd's interferometer for single-exposure hexagonal patterning. Optics Letters, 2009. Vol. 34( Issue 12).
8. Xinghui Li, W.G., Yuki Shimizu and So Ito, A two-axis Lloyd's mirror interferometer for fabrication of two-dimensional diffraction gratings. CIRP Annals - Manufacturing Technology, 2014. Volume 63(Issue 1): p. Pages 461–464.
9. V. Ramanan, E.N., A. Brzezinski, P. V. Braun, and P. Wiltzius, Three dimensional silicon-air photonic crystals with controlled defects using interference lithography. Appl. Phys. Lett., 2008.
10. Homola, M.V.a.J., Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays. Optics Express, 2014. Vol. 22(Issue 15).
11. Yung-Lang Yang , C.-C.H., Tien-Li Chang , Long-Sheng Kuo , Ping-Hei Chen, Study on wetting properties of periodical nanopatterns by a combinative technique of photolithography and laser interferencelithography. Applied Surface Science, 2010.
12. Jia Xu, Z.W., Ziang Zhang, Dapeng Wang, and Zhankun Weng, Fabrication of moth-eye structures on silicon by direct six-beam laser interference
lithography. Journal of Applied Physics, 2014. 115.
13. Sun, Y.-L., Application of a UV Single Mode Fiber as Spatial Filter for a Laser Interference Lithography System. 2011, Master Thesis ,National Tsing Hua University.
14. Yang, Y.-K., Design and development of real-time light shape monitor system of laser interference lithography. 2014, Master Thesis ,National Tsing Hua University
15. Wu, Y.H., Application of Laser Beam Shaping Device on Large Area Laser Interference Lithography System. 2015, Master Thesis ,National Tsing Hua University.
16. Wang, Y.W., Study of Achromatic Interference Lithography Technology Used in Large-Area Lithography. 2015, Master Thesis ,National Tsing Hua University.
17. Butler, H., Adaptive Feedforward for a Wafer Stage in a Lithographic Tool. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013. VOL. 21.
18. Satoru Goto, Y.N., and Shinji Wakui, Smith Predictor-Based Time Delay Compensation for Attitude Control of Pneumatic Anti-Vibration Apparatuses with Two Degrees-of-Freedom. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2014: p. 137-142.
19. Fu-Cheng Wang, Y.-C.T., and Jia-Yush Yen, The Application of Disturbance Response Decoupling to the Vibration Control of an Electron Beam Lithography System. Japanese Journal of Applied Physics, 2009. 48: p. 06FB04-1-5.
20. Koji Nagata, M.O., Norio Saitou,, T.M. Hiroyosbi Ando, Ken lizumi,, and T. Iwasaki, A n active noise cancellation technique for highly accurate EB lithography systems. SPIE, 1997. Vol. 3048: p. 216-224.
21. Koji Nagata, H.O., Toshiyuki Morimura, Masahide Okumura and Norio Saitou, Active Vibration Correction in Electron Beam Lithography System. Japanese Journal of Applied Physics, 1995. Volume 34.
22. Preston P. Young, P.S.P., Theresa A. Maldonado, and Robert Magnusson, Simple interferometric fringe stabilization by charge-coupled-device-based feedback control. APPLIED OPTICS, 2006. Vol. 45, No. 19: p. 4563-4566.
23. Yin-Kuang Yanga, H.-Y.M., Te-Hsun Lin, Yu-Hua Dzeng, Chien-Chung Fu, Eliminate the Vibration Defect for Laser Interference Lithography Using an Optical Chopper System. SPIE, 2017. 10147.
24. Moiré pattern. Wikipedia 2015; Available from: https://zh.wikipedia.org/wiki/%E8%8E%AB%E5%88%97%E6%B3%A2%E7%B4%8B.
25. Gabrielyan, E., THE BASICS OF LINE MOIRÉ PATTERNS AND OPTICAL SPEEDUP. Switzernet Sàrl, Scientific Park of Swiss Federal Institute of Technology, Lausanne (EPFL) p. 1-9.
26. Te-Hsun Lin, Y.-K.Y., Hsuan-Ying Mai, Chien-Chung Fu, Improved Multi-Beam Laser Interference Lithography system by Vibration Analysis Model. SPIE, 2017. 10145.