簡易檢索 / 詳目顯示

研究生: 葉子煜
Yeh, Joey
論文名稱: 奈米碳管紙熱電裝置製備與研究
Production and characterization of carbon nanotubes made conductive papers with Peltier effect
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 游萃蓉
Yew, Tri-Rung
陳仁君
Chen, Jen-jun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 67
中文關鍵詞: 奈米碳管紙纖維熱電效應複合材料熱電裝置致冷裝置
外文關鍵詞: Carbon nanotubes, Composite materials, Paper fibers, Peltier effect, Seebeck effect, Thermoelectric cooler
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管(Carbon Nanotubes, CNTs)是碳的一維同素異構體,其電性、熱性及結構使其能夠實現高效率的熱電能量交換。熱電轉換分成熱電效應(Seebeck Effect)與電熱效應(Peltier Effect); 前者為透過材料冷熱端的溫度梯度形成電位差,後者則是利用電位差產生材料兩端的冷熱差。良好的熱電材料需要高的熱電優值(zT值),及同時具備高導電率、低熱傳導率與高熱電係數,才會有明顯的熱電能量轉換。本研究使用多壁奈米碳管(Multi-Walled Carbon Nanotubes, MWCNTs)與紙纖維混合後形成的可撓式導電碳管紙複合材料,透過高溫熱置換硼摻雜(Boron doping)與氮氣電漿改質處理,分別製備了p-type與n-type的半導體特性碳管紙,並嘗試將樣品組成熱電致冷裝置(Thermoelectric cooler, TEC),期望能觀察到致冷效果及材料冷熱端溫差。
    本研究團隊過去曾研究出一種具有熱電效果的奈米碳管紙複合材料,其中一端經由氮氣電漿處理過後而有n-type摻雜,另一端則為未處理的樣品。本研究為了提升複合材料的熱電效果,採用硼摻雜的奈米碳管取代純奈米碳管,成功藉由硼摻雜讓p-type的電洞增加進而增強Peltier效應,使熱電元件具有較大的溫差。實驗室過去研究指出30 wt%的多壁奈米碳管濃度有最好的熱電表現,冷熱溫差最大,故本實驗也採用30 wt%的摻硼奈米碳管紙來製備熱電樣品。將p-與n-type碳管紙樣品透過電子顯微鏡、拉曼光譜、化學分析電子能譜儀進行材料分析,再將樣品拿去做熱電分析,霍爾效應及雷射閃光法量測,求得導電度、載子濃度、熱電係數、熱傳導係數,算出zT值,最後將p-與n-type碳管紙組合成致冷裝置並觀察致冷現象。


    Carbon Nanotubes (CNTs) are one-dimensional allotropes of carbon, and their electrical, thermal, and structural properties enable efficient exchange of thermoelectric energy. Thermoelectric conversion is divided into the Seebeck effect and the Peltier effect; the former generates a potential difference across temperature gradient between hot and cold ends of a solid. The latter, on the other hand, utilizes the potential difference to create a temperature difference between two ends of a solid. A good thermoelectric material requires a high thermoelectric figure of merit (zT), along with high electrical conductivity, low thermal conductivity, and a high Seebeck coefficient for effective conversion of thermal energy.
    In this study, flexible conductive papers made of multi-walled carbon nanotubes (MWCNTs, 30 w.t%) and paper fibers are chemically modified into p- and n-type respectively through plasma and B-doping techniques. Conductive papers are subjected to Hall-effect measurements, X-ray Photoelectron Spectroscopy (XPS), laser flash method, Raman spectroscopy and Scanning Electron Microscopy (SEM) to uncover conductivity, carrier concentration, Seebeck coefficient and zT value. Finally, p- and n-type conductive papers are assembled into Peltier devices, followed by temperature difference measurements.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 第二章 文獻回顧 3 2.1 熱電簡介 3 2.1.1 Seebeck Effect 3 2.1.2 Peltier Effect 5 2.1.3 Thomson Effect 6 2.2 熱電效率與理論 7 2.2.1 熱電品質因數zT 7 2.2.2 熱電效率提升 10 2.2.3 熱電材料介紹 12 2.2.4 熱電致冷理論 14 2.2.5 熱電發電理論 16 2.3 奈米碳管性質 16 2.3.1 奈米碳管的結構 17 2.3.2 奈米碳管的電子結構 18 2.3.3 奈米碳管的熱傳導性質 20 2.3.4 奈米碳管的熱電性質 22 2.3.5 奈米碳管的化學改質 24 2.4 電漿技術 25 2.4.1 直流輝光放電電漿 26 2.4.2 電漿表面改質 27 2.5 熱電致冷裝置(Thermo-electric cooling, TEC) 28 2.5.1 TEC的原理與設計 28 2.5.2 TEC的優缺點與應用 28 第三章 研究方法 30 3.1 實驗藥品與器材 30 3.2 實驗流程圖 32 3.3 實驗步驟 33 3.3.1 碳管紙製備 33 3.3.2 奈米碳管硼摻雜 34 3.3.3 電漿表面改質 34 3.3.4 熱電致冷裝置設計與製備 35 3.4 量測與分析 36 3.4.1 電性量測 36 3.4.2 熱傳導係數量測 38 3.4.3 Seebeck係數量測 38 3.4.4 掃描式電子顯微鏡 39 3.4.5 拉曼光譜儀 40 3.4.6 霍爾效應量測 41 3.4.7 化學分析電子能譜儀 42 第四章 結果與討論 43 4.1 碳管紙結構與成分分析 43 4.1.1 SEM與HRTEM微結構分析 43 4.1.2 拉曼光譜儀分析 46 4.1.3 ESCA表面鍵結與元素分析 47 4.2 碳管紙之熱電分析 50 4.2.1 碳管紙之碳管濃度分析 50 4.2.2 碳管紙之熱電zT討論 52 4.3 致冷裝置溫差測試 55 第五章 結論 59 參考文獻 61

    [1] B. D. Gates, "Flexible electronics," Science, vol. 323, no. 5921, pp. 1566-1567, 2009.
    [2] D. Zhao and G. Tan, "A review of thermoelectric cooling: Materials, modeling and applications," Applied thermal engineering, vol. 66, no. 1-2, pp. 15-24, 2014.
    [3] J. L. Blackburn, A. J. Ferguson, C. Cho, and J. C. Grunlan, "Carbon‐nanotube‐based thermoelectric materials and devices," Advanced Materials, vol. 30, no. 11, p. 1704386, 2018.
    [4] S. Soares, G. Camino, and S. Levchik, "Comparative study of the thermal decomposition of pure cellulose and pulp paper," Polymer degradation and stability, vol. 49, no. 2, pp. 275-283, 1995.
    [5] 周凌宏, "奈米碳管紙二極體之製備與研究," 國立清華大學, 2022.
    [6] 黃鼎峻, "改質奈米碳管紙製備可撓及堆疊式超級電容之研究," 國立清華大學, 2023.
    [7] 陳楷軒, "奈米碳管紙之製備及其作為海水電池陰極放電研究," 清華大學材料科學工程學系學位論文, vol. 2015, pp. 1-82, 2015.
    [8] 李奕騁, "電漿改質奈米碳管與紙纖維複合材料之熱電性質研究," 國立清華大學, 2022.
    [9] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nature materials, vol. 7, no. 2, pp. 105-114, 2008.
    [10] J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, "New and old concepts in thermoelectric materials," Angewandte Chemie International Edition, vol. 48, no. 46, pp. 8616-8639, 2009.
    [11] T. M. Tritt, "Thermoelectric materials: Principles, structure, properties, and applications," 2002.
    [12] D. M. Rowe, CRC Handbook of Thermoelectrics. CRC Press, 1995.
    [13] A. Gonçalves et al., "Semiconducting glasses: A new class of thermoelectric materials?," Journal of Solid State Chemistry, vol. 193, pp. 26-30, 2012.
    [14] L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical review B, vol. 47, no. 19, p. 12727, 1993.
    [15] L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical review B, vol. 47, no. 24, p. 16631, 1993.
    [16] E. U. Rafailov, M. A. Cataluna, and E. A. Avrutin, Ultrafast lasers based on quantum dot structures: physics and devices. John Wiley & Sons, 2011.
    [17] G. Mahan, "Figure of merit for thermoelectrics," Journal of Applied Physics, vol. 65, no. 4, pp. 1578-1583, 1989.
    [18] R. Chasmar and R. Stratton, "The thermoelectric figure of merit and its relation to thermoelectric generators," International journal of electronics, vol. 7, no. 1, pp. 52-72, 1959.
    [19] R. W. Keyes, "High-temperature thermal conductivity of insulating crystals: relationship to the melting point," Physical Review, vol. 115, no. 3, p. 564, 1959.
    [20] V. Zlatic and A. Hewson, "New materials for thermoelectric applications: theory and experiment." Springer, 2012.
    [21] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," nature, vol. 413, no. 6856, pp. 597-602, 2001.
    [22] D. M. Rowe, Thermoelectrics handbook: macro to nano. CRC press, 2018.
    [23] X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang, and M. Niino, "Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure," Applied physics letters, vol. 90, no. 1, 2007.
    [24] B. Poudel et al., "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," science, vol. 320, no. 5876, pp. 634-638, 2008.
    [25] Z. Dughaish, "Lead telluride as a thermoelectric material for thermoelectric power generation," Physica B: Condensed Matter, vol. 322, no. 1-2, pp. 205-223, 2002.
    [26] E. Skrabek and D. Trimmer, "Properties of the general TAGS system," in CRC handbook of thermoelectrics: CRC Press, 2018, pp. 267-276.
    [27] G. Nolas, M. Kaeser, R. Littleton IV, and T. Tritt, "High figure of merit in partially filled ytterbium skutterudite materials," Applied Physics Letters, vol. 77, no. 12, pp. 1855-1857, 2000.
    [28] X. Tang, Q. Zhang, L. Chen, T. Goto, and T. Hirai, "Synthesis and thermoelectric properties of p-type-and n-type-filled skutterudite RyMxCo4− xSb12 (R: Ce, Ba, Y; M: Fe, Ni)," Journal of Applied Physics, vol. 97, no. 9, 2005.
    [29] M. Puyet et al., "Beneficial effect of Ni substitution on the thermoelectric properties in partially filled CayCo4− xNixSb12 skutterudites," Journal of Applied Physics, vol. 97, no. 8, 2005.
    [30] A. Saramat et al., "Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30," Journal of Applied Physics, vol. 99, no. 2, 2006.
    [31] S. Bhattacharya et al., "Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn 1− x Sb x," Applied Physics Letters, vol. 77, no. 16, pp. 2476-2478, 2000.
    [32] Q. Shen et al., "Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds," Applied Physics Letters, vol. 79, no. 25, pp. 4165-4167, 2001.
    [33] S. Sakurada and N. Shutoh, "Effect of Ti substitution on the thermoelectric properties of (Zr, Hf) NiSn half-Heusler compounds," Applied Physics Letters, vol. 86, no. 8, 2005.
    [34] S. R. Culp, S. J. Poon, N. Hickman, T. M. Tritt, and J. Blumm, "Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 C," Applied Physics Letters, vol. 88, no. 4, 2006.
    [35] T. Caillat, J.-P. Fleurial, and A. Borshchevsky, "Preparation and thermoelectric properties of semiconducting Zn4Sb3," Journal of Physics and Chemistry of Solids, vol. 58, no. 7, pp. 1119-1125, 1997.
    [36] G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B. B. Iversen, "Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties," Nature materials, vol. 3, no. 7, pp. 458-463, 2004.
    [37] S. R. Brown, S. M. Kauzlarich, F. Gascoin, and G. J. Snyder, "Yb14MnSb11: New high efficiency thermoelectric material for power generation," Chemistry of materials, vol. 18, no. 7, pp. 1873-1877, 2006.
    [38] C. Yu, Y. S. Kim, D. Kim, and J. C. Grunlan, "Thermoelectric behavior of segregated-network polymer nanocomposites," Nano letters, vol. 8, no. 12, pp. 4428-4432, 2008.
    [39] Y. Choi et al., "Effect of the carbon nanotube type on the thermoelectric properties of CNT/Nafion nanocomposites," Organic Electronics, vol. 12, no. 12, pp. 2120-2125, 2011.
    [40] D. D. Freeman, K. Choi, and C. Yu, "N-type thermoelectric performance of functionalized carbon nanotube-filled polymer composites," PloS one, vol. 7, no. 11, p. e47822, 2012.
    [41] L. Wang et al., "Engineered molecular chain ordering in single‐walled carbon nanotubes/polyaniline composite films for high‐performance organic thermoelectric materials," Chemistry–An Asian Journal, vol. 11, no. 12, pp. 1804-1810, 2016.
    [42] D. Kim, Y. Kim, K. Choi, J. C. Grunlan, and C. Yu, "Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate)," ACS nano, vol. 4, no. 1, pp. 513-523, 2010.
    [43] J. Wang, K. Cai, S. Shen, and J. Yin, "Preparation and thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites," Synthetic metals, vol. 195, pp. 132-136, 2014.
    [44] C. T. Hong et al., "Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films," Journal of materials chemistry A, vol. 3, no. 23, pp. 12314-12319, 2015.
    [45] O. Bubnova et al., "Optimization of the thermoelectric figure of merit in the conducting polymer poly (3, 4-ethylenedioxythiophene)," Nature materials, vol. 10, no. 6, pp. 429-433, 2011.
    [46] G. P. Moriarty, K. Briggs, B. Stevens, C. Yu, and J. C. Grunlan, "Fully organic nanocomposites with high thermoelectric power factors by using a dual‐stabilizer preparation," Energy Technology, vol. 1, no. 4, pp. 265-272, 2013.
    [47] K. Biswas et al., "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, vol. 489, no. 7416, pp. 414-418, 2012.
    [48] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, no. 6348, pp. 56-58, 1991.
    [49] 陳亞群, "多壁奈米碳管填充之導電高分子材料電磁波屏蔽效能研究," 2007.
    [50] 張雅筑, "常壓下以電暈方式製備奈米碳管或奈米結構," 2007.
    [51] 李惠菁, "多壁奈米碳管/聚乙烯醇高分子複合材料合成與物性分析研究," 2008.
    [52] S. Rathinavel, K. Priyadharshini, and D. Panda, "A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application," Materials Science and Engineering: B, vol. 268, p. 115095, 2021.
    [53] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, "Structure and electronic properties of carbon nanotubes," vol. 104, ed: ACS Publications, 2000, pp. 2794-2809.
    [54] E. T. Thostenson, Z. Ren, and T.-W. Chou, "Advances in the science and technology of carbon nanotubes and their composites: a review," Composites science and technology, vol. 61, no. 13, pp. 1899-1912, 2001.
    [55] R. Saito, M. Fujita, G. Dresselhaus, and u. M. Dresselhaus, "Electronic structure of chiral graphene tubules," Applied physics letters, vol. 60, no. 18, pp. 2204-2206, 1992.
    [56] A. N. Mina, A. A. Awadallah, A. H. Phillips, and R. R. Ahmed, "Simulation of the band structure of graphene and carbon nanotube," in Journal of Physics: Conference Series, 2012, vol. 343, no. 1: IOP Publishing, p. 012076.
    [57] G. Dresselhaus, M. S. Dresselhaus, and R. Saito, "Physical properties of carbon nanotubes," World scientific, 1998.
    [58] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, "Science of fullerenes and carbon nanotubes: their properties and applications," Elsevier, 1996.
    [59] P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, "Carbon nanotube electronics," Proceedings of the IEEE, vol. 91, no. 11, pp. 1772-1784, 2003.
    [60] M. Dresselhaus and P. Eklund, "Phonons in carbon nanotubes," Advances in physics, vol. 49, no. 6, pp. 705-814, 2000.
    [61] M. Dresselhaus, G. Dresselhaus, and A. Jorio, "Unusual properties and structure of carbon nanotubes," Annu. Rev. Mater. Res., vol. 34, pp. 247-278, 2004.
    [62] A. Hassanien et al., "Geometrical structure and electronic properties of atomically resolved multiwall carbon nanotubes," Applied physics letters, vol. 75, no. 18, pp. 2755-2757, 1999.
    [63] J. Hone, M. Whitney, C. Piskoti, and A. Zettl, "Thermal conductivity of single-walled carbon nanotubes," Physical review B, vol. 59, no. 4, p. R2514, 1999.
    [64] E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, "Thermal conductance of an individual single-wall carbon nanotube above room temperature," Nano letters, vol. 6, no. 1, pp. 96-100, 2006.
    [65] J. Che, T. Cagin, and W. A. Goddard III, "Thermal conductivity of carbon nanotubes," Nanotechnology, vol. 11, no. 2, p. 65, 2000.
    [66] Y. Nakai et al., "Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film," Applied Physics Express, vol. 7, no. 2, p. 025103, 2014.
    [67] A. D. Avery et al., "Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties," Nature Energy, vol. 1, no. 4, pp. 1-9, 2016.
    [68] N. T. Hung, A. R. Nugraha, E. H. Hasdeo, M. S. Dresselhaus, and R. Saito, "Diameter dependence of thermoelectric power of semiconducting carbon nanotubes," Physical review B, vol. 92, no. 16, p. 165426, 2015.
    [69] K. McGuire, N. Gothard, P. Gai, M. Dresselhaus, G. Sumanasekera, and A. Rao, "Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes," Carbon, vol. 43, no. 2, pp. 219-227, 2005.
    [70] B. Sadanadan et al., "Synthesis and thermoelectric power of nitrogen-doped carbon nanotubes," Journal of Nanoscience and Nanotechnology, vol. 3, no. 1-2, pp. 99-103, 2003.
    [71] W. Han, Y. Bando, K. Kurashima, and T. Sato, "Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction," Applied physics letters, vol. 73, no. 21, pp. 3085-3087, 1998.
    [72] B. Chandra, A. Afzali, N. Khare, M. M. El-Ashry, and G. S. Tulevski, "Stable charge-transfer doping of transparent single-walled carbon nanotube films," Chemistry of Materials, vol. 22, no. 18, pp. 5179-5183, 2010.
    [73] Y. Nonoguchi et al., "Simple salt‐coordinated n‐type nanocarbon materials stable in air," Advanced Functional Materials, vol. 26, no. 18, pp. 3021-3028, 2016.
    [74] K. S. Mistry et al., "n-Type transparent conducting films of small molecule and polymer amine doped single-walled carbon nanotubes," ACS nano, vol. 5, no. 5, pp. 3714-3723, 2011.
    [75] Y. Nonoguchi, Y. Iihara, K. Ohashi, T. Murayama, and T. Kawai, "Air‐tolerant Fabrication and Enhanced Thermoelectric Performance of n‐Type Single‐walled Carbon Nanotubes Encapsulating 1,1′‐Bis (diphenylphosphino) ferrocene," Chemistry–An Asian Journal, vol. 11, no. 17, pp. 2423-2427, 2016.
    [76] G. U. Sumanasekera, C. Adu, S. Fang, and P. Eklund, "Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes," Physical Review Letters, vol. 85, no. 5, p. 1096, 2000.
    [77] A. Grill, "Cold plasma in materials fabrication," IEEE Press, New York, 1994.
    [78] M. I. Boulos, P. Fauchais, and E. Pfender, "Thermal plasmas: fundamentals and applications," Springer Science & Business Media, 2013.
    [79] R. Wolf and A. C. Sparavigna, "Role of plasma surface treatments on wetting and adhesion," Engineering, vol. 2, no. 06, p. 397, 2010.
    [80] P. K. Chu, J. Chen, L. Wang, and N. Huang, "Plasma-surface modification of biomaterials," Materials Science and Engineering: R: Reports, vol. 36, no. 5-6, pp. 143-206, 2002.
    [81] J. Batey and E. Tierney, "Low‐temperature deposition of high‐quality silicon dioxide by plasma‐enhanced chemical vapor deposition," Journal of Applied Physics, vol. 60, no. 9, pp. 3136-3145, 1986.
    [82] U. Vohrer, N. P. Zschoerper, Y. Koehne, S. Langowski, and C. Oehr, "Plasma modification of carbon nanotubes and bucky papers," Plasma Processes and Polymers, vol. 4, no. S1, pp. S871-S877, 2007.
    [83] S. Sharma, V. Dwivedi, and S. Pandit, "A review of thermoelectric devices for cooling applications," International journal of green energy, vol. 11, no. 9, pp. 899-909, 2014.
    [84] J. Ahmad. "Peltier Module Design For Precision Thermal Management." (accessed.
    [85] M. Gillott, L. Jiang, and S. Riffat, "An investigation of thermoelectric cooling devices for small‐scale space conditioning applications in buildings," International Journal of Energy Research, vol. 34, no. 9, pp. 776-786, 2010.
    [86] T.-J. Li et al., "Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction," Sensors and Actuators B: Chemical, vol. 248, pp. 288-297, 2017.
    [87] D. K. Schroder, "Semiconductor material and device characterization," John Wiley & Sons, 2015.
    [88] O. Philips’Gloeilampenfabrieken, "A method of measuring specific resistivity and Hall effect of discs of arbitrary shape," Philips Res. Rep, vol. 13, no. 1, pp. 1-9, 1958.
    [89] U. Gelius et al., "Molecular spectroscopy by means of ESCA III. Carbon compounds," Physica Scripta, vol. 2, no. 1-2, p. 70, 1970.
    [90] H. R. Barzegar, E. Gracia-Espino, T. Sharifi, F. Nitze, and T. Wågberg, "Nitrogen doping mechanism in small diameter single-walled carbon nanotubes: impact on electronic properties and growth selectivity," The Journal of Physical Chemistry C, vol. 117, no. 48, pp. 25805-25816, 2013.
    [91] Y. Li and A. E. Ross, "Plasma-treated carbon-fiber microelectrodes for improved purine detection with fast-scan cyclic voltammetry," Analyst, vol. 145, no. 3, pp. 805-815, 2020.
    [92] W. Hsu et al., "Metallic behaviour of boron-containing carbon nanotubes," Chemical Physics Letters, vol. 323, no. 5-6, pp. 572-579, 2000.
    [93] Y. Sun, S. R. Wilson, and D. I. Schuster, "High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents," Journal of the American Chemical Society, vol. 123, no. 22, pp. 5348-5349, 2001.
    [94] Q. Yao, Q. Wang, L. Wang, and L. Chen, "Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering," Energy & Environmental Science, vol. 7, no. 11, pp. 3801-3807, 2014.
    [95] Q. Zhang et al., "Preparation and thermoelectric properties of multi-walled carbon nanotube/polyaniline hybrid nanocomposites," Journal of Materials Chemistry A, vol. 1, no. 39, pp. 12109-12114, 2013.
    [96] G. P. Moriarty et al., "Thermoelectric behavior of organic thin film nanocomposites," Journal of Polymer Science Part B: Polymer Physics, vol. 51, no. 2, pp. 119-123, 2013.
    [97] W. Lee et al., "Enhanced thermoelectric performance of bar-coated SWCNT/P3HT thin films," ACS applied materials & interfaces, vol. 7, no. 12, pp. 6550-6556, 2015.
    [98] L. Wang, X. Jia, D. Wang, G. Zhu, and J. Li, "Preparation and thermoelectric properties of polythiophene/multiwalled carbon nanotube composites," Synthetic metals, vol. 181, pp. 79-85, 2013.

    QR CODE