簡易檢索 / 詳目顯示

研究生: 唐維忠
Tang, Wei-Chung
論文名稱: 光電化學太陽電池離子擴散分子模擬與實作實驗
Molecular Simulation and Fabrication Experiment of Ionic Diffusion for Photoelectrochemical Solar Cells
指導教授: 洪哲文
Hong, Che-Wun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 80
中文關鍵詞: 光電化學太陽電池分子動力學
外文關鍵詞: Photoelectrochemical Solar Cell, Molecular Dynamics
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在以分子動力學(Molecular Dynamics)理論與方法,模擬光電化學太陽電池(Photoelectrochemical Solar Cells)電解質擴散率的微觀性質,並以自製光電化學太陽電池為例,計算與實驗驗証其中離子液體在自由層及多孔層之離子擴散率。
    在染料敏化太陽電池中,染料分子被光子激發產生電子,電解質氧化還原速率,離子擴散速率以及離子導電性能等均會對整體發電效率有很大的影響。因此,研究內容從微觀的角度開始出發,首先建立奈米尺度的電解質模型,並利用量子力學-Austin Model 1,計算電解質中的分子與離子之分子結構及電荷分布狀態,將模擬出來的結果以統計熱力學的方式進行分析,得到所需要的擴散係數。另一方面,本研究建立二氧化鈦分子結構,模擬電解質在二氧化鈦奈米孔洞中的傳輸現象,得到在不同孔隙率下的電解質擴散係數,並分析孔隙率對於離子擴散性的影響。
    本研究亦使用旋轉電極量測電解質溶液之極限電流,藉以換算得到擴散係數,並將模擬所得到的結果與實驗進行比較,以驗證模擬的正確性。由於擴散率是決定光電化學太陽電池效率的主要關鍵性質之ㄧ,因此,本研究主要針對不同濃度與溫度的條件下進行模擬,找出最佳化的電解質成分與操作溫度,並分析電解質濃度與離子導電率的關係,以達到光電化學太陽電池最佳性能。最後,以自行製作光電化學太陽電池,使用太陽光模擬器,於標準狀態下量測其效率,以了解電池整體的發電性能。


    摘要 I 誌謝 II 目錄 III 表目錄 V 圖目錄 VI 參數定義 IX 第一章 緒論 - 1 - 1.1前言 - 1 - 1.2研究動機與目的 - 3 - 1.3光電化學太陽電池簡介 - 3 - 1.4文獻回顧 - 5 - 第二章 巨觀與微觀理論模式 - 10 - 2.1 染料敏化太陽電池工作原理 - 10 - 2.2 分子動力學模擬 - 13 - 2.3 運動方程式與數值方法 - 14 - 2.4 勢能函數(Potential functions) - 16 - 2.4.1分子內勢能函數(Intra-molecular potential function) - 18 - 2.4.2分子間勢能函數(Inter-molecular potential function) - 19 - 2.5週期性邊界條件(Periodic Boundary Conditions) - 23 - 2.6 旋轉電極實驗原理 - 26 - 第三章 系統模型建構與實驗方法 - 29 - 3.1 模擬與實驗流程 - 29 - 3.2 模擬模型建立 - 30 - 3.2.1 初始結構建立 - 30 - 3.2.2 模擬模型建立 - 33 - 3.3 分子動力學模擬 - 37 - 3.3.1 CONFIG檔 - 37 - 3.3.2 FIELD檔 - 38 - 3.3.3 CONTROL檔 - 39 - 3.4 平均平方位移(Mean Square Displacement) - 41 - 3.5 徑向分佈函數(Radial Distribution Function) - 41 - 3.6 擴散係數(Diffusion coefficient) - 43 - 3.7 離子電導率(Ionic Conductivity) - 43 - 3.8 實驗細節與參數設定 - 44 - 第四章 模擬與實驗結果討論 - 47 - 4.1 系統平衡狀態 - 47 - 4.2 平均平方位移 - 53 - 4.3 徑向分佈函數 - 56 - 4.4 擴散係數 - 61 - 4.5 離子傳導率 - 70 - 4.6 光電化學太陽電池實作與效率量測 - 71 - 第五章 結論與未來工作建議 - 74 - 5.1 結論 - 74 - 5.2 未來工作建議 - 75 - 參考文獻 - 77 -

    [1] M. Gr□tzel, “Powering the planet”, Nature, Vol.403, pp.363, 2000.
    [2] B. O’Regan, and M. Gr□tzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film”, Nature, Vol.353, pp.737, 1991.
    [3] F. Hurd and R. Livingston, “The quantum yields of some dye-sensitized photooxidations”, Journal of Physical Chemistry, Vol.44, pp.865-873, 1940.
    [4] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. I.”, Journal of Physical Chemistry, Vol.69, pp.641-647, 1965.
    [5] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. II.” Journal of Physical Chemistry, Vol.69, pp.647-656, 1965.
    [6] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. III.” Journal of Physical Chemistry, Vol.69, pp.2834-2841, 1965.
    [7] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes. IV.” Journal of Physical Chemistry, Vol.69, pp.2842-2848, 1965.
    [8] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitized zinc oxide: aqueous electrolyte/platinum photocell”, Nature, Vol.261, pp.402-403, 1976.
    [9] A. Hagfeldt and M. Gr□tzel, “Molecular photovoltaics”, Accounts of Chemical Research, Vol.33, pp.269-277, 2000.
    [10] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Gr□tzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers”, Journal of the American Chemical Society, Vol.127, pp.16835-16847, 2005.
    [11] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, and M. Gratzel, “Enhance the optical absorptivity of nanocrystalline TiO2 Film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells”, Journal of the American Chemical Society, Vol.130, pp.10720-10728, 2008.
    [12] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells”, Science, Vol.295, pp.2425-2427, 2002.
    [13] D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger and H. Schindler, “Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials”, Synthetic Metals, Vol.125, pp.279-287, 2002.
    [14] K. R. Haridas, J. Ostrauskaite, M. Thelakkat, M. Heim, R. Bilke and D. Haarer, “Synthesis of low melting hole conductor systems based on triarylamines and application in dye sensitized solar cells”, Synthetic Metals, Vol.121, pp.1573-1574, 2001.
    [15] G. R. A. Kumara, S. Kaneko, M. Okuya, and K. Tennakone, “Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor”, Langmuir, Vol.18, pp.10493-10495, 2002.
    [16] Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, and M. Uragami, “Fabrication of an efficient solid-state dye-sensitized solar cell”, Langmuir, Vol.19, pp.3572-3574 ,2003.
    [17] B. O'Regan and D. T. Schwartz, “Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL'NCS/CuSCN: initiation and potential mechanisms”, Chemistry of Materials, Vol.10, pp.1501-1509, 1998.
    [18] G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P. V. V. Jayaweera, D. B. R. A. De Silva, and K. Tennakone, “Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide”, Solar Energy Materials and Solar Cells, Vol.69, pp.195-199, 2001.
    [19] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, and H. Arakawa, “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells”, Solar Energy Materials and Solar Cells, Vol.70, pp.151-161, 2001.
    [20] S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori, and C. A. Bignozzi, “Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells”, Journal of the American Chemical Society, Vol.124, pp.11215-11222, 2002.
    [21] W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, and S. Yanagida, “Quasi-solid-state dye-sensitized TiO2 solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine”, Journal of Physical Chemistry B, Vol.105, pp.12809-12815, 2001.
    [22] E. Stathatos and P. LianosS. M. Zakeeruddin, P. Liska, and M. Gr□tzel, “A quasi-solid-state dye-sensitized solar cell based on a sol-gel nanocomposite electrolyte containing ionic liquid”, Chemistry of Materials, Vol.15, pp.1825-1829, 2003.
    [23] E. Chatzivasiloglou, T. Stergiopoulos, N. Spyrellis, and P. Falaras, “Solid-state sensitized solar cells, using [Ru(dcbpyH2)2Cl2]H2O as the dye and PEO/titania/I-/I3- as the redox electrolyte”, Journal of Materials Processing Technology, Vol.161, pp.234-240, 2005.
    [24] S. R. Scully, M. T. Lloyd, R. Herrera, E. P. Giannelis, and G. G. Malliaras, “Dye-sensitized solar cells employing a highly conductive and mechanically robust nanocomposite gel electrolyte”, Synthetic Metals, Vol.144, pp.291-296, 2004.
    [25] H. Usui, H. Matsui, N. Tanabe, S. Yanagida, “Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes”, Journal of Photochemistry and Photobiology A: Chemistry, Vol.164, pp.97-101, 2004.
    [26] S. L. Mayo, B. D. Olafson, and W. D. Goddard, “Dreiding: a generic gorce for molecular simulations”, Journal of Physical Chemistry, Vol.94, pp.8897-8909, 1990.
    [27] R. Vuilleumier, and D. Borgis, “An extend empirical valence bond model for describing proton transfer in H+(H2O) clusters and liquid water”, Chemical Physics Letters, Vol. 284, pp.71-77, 1998.
    [28] J. Ennari, M. Elomaa, and F. Sundholm, “Modeling a polyelectrolyte system in water to estimate the ion-conductivity”, Polymer, Vol.40, pp.5035-5041, 1999.
    [29] G. Herlem, B. Lakard, P. Damay, F. Leclercq, S. Picaud, P. N. M. Hoang, “Combined elastic neutron scattering experiment and molecular dynamics simulations on the concentrated liquid electrolyte NaI-3.3NH3”, Journal of Molecular Liquids, Vol.108, pp.1–19 , 2003.
    [30] G. Herlem, S. Picaud, and P. N. M. Hoang, “A Molecular dynamics simulation of the electrical conductivity behaviors of high concentrated liquid ammoniates Nal.αNH3 : Comparison with experimental measurements”, Journal of Chemical Physics, Vol.122, pp.171102, 2005.
    [31] C. Shi, S. Dai, K. Wang, X. Pan, Li G., L. Zeng, L. Hu, and F. Kong, “Influence of 1-methyl-3-propylimidazolium iodide on I3−/I− redox behavior and photovoltaic performance of dye-sensitized solar cells”, Solar Energy Materials and Solar Cells, Vol.86, pp.527-535, 2005.
    [32] R. Kawano and M. Watanabe, “Equilibrium potentials and charge transport of an I-/I3- redox couple in an ionic liquid”, Chemical Communications, pp.330-331, 2003.
    [33] G. Kron, U. Ran, M. D□rr, T. Miteva, G. Nelles, A. Yasuda, and J. H.Werner, “Diffusion limitations to I3-/I- electrolyte transport through nanoporous TiO2 networks”, Electrochemical and solid-state letters, Vol.6, pp.E11-E14, 2003.
    [34] M. Durr, G. Kron, U. Rau, J. H. Werner, A. Yasuda and G. Nelles, “Diffusion-limited transport of I3- through nanoporous TiO2-polymer gel networks”, Journal of Chemical Physics, Vol.121, pp.11374-11378, 2004.
    [35] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, “Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): the case of solar cells using the I-/I3- redox couple”, Journal of Physical Chemistry B, Vol.109, pp.3480-3487, 2005.
    [36] D. C. Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, London, 1997.
    [37] R. J. Arsenault,and J. R. Beeler, “Computer Simulation in Material Science”, Asm international, USA, 1988.
    [38] M.P.Allen and D.J. Tildesley, “Computer Simulation of Liquids”, Oxford Science, London, 1987.
    [39] J. M. Haile, “Molecular Dynamics Simulation”, John Wiley & Sons, New York, USA, 1992.
    [40] F.G. Helferich, “Ion Exchange”, McGraw-Hill, New York, 1962.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE