研究生: |
吳啓賓 Wu, Chi-Pin |
---|---|
論文名稱: |
射頻高功率換流器於低溫電漿滅菌應用 Application of RF High Power Inverter in Low Temperature Plasma Sterilization |
指導教授: |
吳財福
Wu, Tsai-Fu |
口試委員: |
邱煌仁
Chiu, Huang-Jen 林長華 Lin, Chang-Hua 沈志隆 Shen, Chih-Lung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 電漿 、低溫電漿滅菌法 、Class-D換流器 、Class-E換流器 、13.56 MHz 、阻抗匹配 、GaN |
外文關鍵詞: | matching circuit, plasma sterilization, Class-E inverter |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在研製一射頻電漿源,以產生電漿,作為提供低溫電漿滅菌。低溫電漿滅菌法相較於其他滅菌法擁有許多優點,包括:滅菌週期短,一次的滅菌流程僅需要55~75分鐘;不須在高溫環境下殺菌,其工作溫度可在50 °C以下進行,適用於不耐熱及不耐濕的醫療器材;最後,滅菌流程後不會產生有毒副產物,是一種非常乾淨的滅菌法。
本研究根據所需的電氣規格來製作射頻電源換流器,其電路架構選用Class-D半橋式LCC串並聯諧振換流器與Class-E諧振換流器,其開關切換頻率皆為13.56 MHz,並使電路的諧振頻率低於切換頻率,以達到零電壓切換(ZVS),將開關切換損失降至最低。此外,為了將電路和低溫電漿滅菌腔體做系統整合,規劃一套匹配電路的設計方法,目的為將腔體阻抗匹配至電路阻抗,以達到最大功率傳輸。在避免產生功率反射或損耗的問題時,也可以保護電路受到反射功率而損毀的情況發生。
本研究所採用的負載分為兩種:50 Ω純電阻和低溫電漿滅菌腔體,前者為許多射頻應用負載端之常見的阻抗值,而後者則是使研製之換流器能夠與實際應用結合,以便做系統整合。
本論文的主要貢獻包含:(1)研製一使用新型氮化鎵功率開關之Class-D諧振換流器,並輸出頻率為13.56 MHz且THD值小於1.5 %之正弦波,(2)說明本研究中所使用的功率開關之寄生電容C_oss,並其對於Class-D諧振換流器產生之影響,(3)規劃一套低溫電漿滅菌腔體的等效阻抗量測方法,並以此設計匹配電路,以及(4)研製一Class-E諧振換流器,並以低溫電漿滅菌腔體作為負載,成功實現功率零反射且產生電漿。
This study focuses on the design and implementation of an RF resonant inverter with a matching circuit to generate plasma for plasma sterilization system. The circuit topology is a Class-D series parallel resonant inverter with the operating frequency of 13.56 MHz. Through the resonant characteristics of the LCC network, the switch can operate with soft-switching, reducing switching losses significantly. This inverter is operated at a constant frequency, and the output power can be adjusted by varying input dc voltages.
Two types of loads are used as the output of the system in this study. One is a precise 50-ohm resistance, the other is the chamber of a plasma sterilization system. Additionally, to alleviate the problem of reactive power and switching losses caused by the sterilization chamber, this research also introduces an impedance matching circuit to match the chamber load to 50 Ω.
The main contributions of this research include: (1) developing a Class-D inverter using GaN power devices as the switches, and generating 13.56 MHz sinusoidal output waveforms with THD less than 1.5 %, (2) explaining the influence of switch parasitic capacitance on Class-D circuits, (3) designing a set of sterilization chamber load measurement method, and on this basis, design a matching circuit, and(4) developing a Class-E inverter with sterilization chamber as load, achieving the generation of plasma.
[1] A. Jacob, “Process and apparatus for dry sterilization of medical devices and materials,” U.S. Patent No. US4818488A.
[2] J. Chien, R. Platt and A. Lemus, “Sterilization system with a plasma generator controlled by a digital signal processor,” U.S. Patent No. 20030059340A1.
[3] P. T. Jacobs and S. Lin, “Hydrogen peroxide plasma sterilization system,” U.S. Patent No. 4756882A.
[4] H. Conrads and M. Schmidt, “Plasma generation and plasma sources,” Plasma Sources Science and Technology, vol. 9, no. 4, pp. 441-454, 2000.
[5] F. Mehmood, T. Kamal and U. Ashraf, “Generation and Applications of Plasma (An AcademicReview),”Preprints2018,2018100061
[6] 張家豪,魏鴻文,翁政輝,柳克強,李安平,寇崇善,2006,電漿源原理與應用之介紹,物理雙月刊,28卷,2期,頁440-442,4月
[7] Plasma Engineering: What is Electron Cyclotron Resonance?
Available: https://www.hidenanalytical.com/blog/plasma-engineering-electron-cyclotron-resonance/
[8] A. Jacob, “Process and apparatus for dry sterilization of medical devices and materials,” U.S. Patent No. 4818488A.
[9] EPARC,電力電子學綜論,全華,2015。
[10] M. K. Kazimierczuk and D. Czarkowski, Resonant Power Converters, 2nd Edition, New York: Wiley, John & Sons, Inc., 2012.
[11] M. K. Kazimierczuk, N. Thirunarayan and S. Wang, "Analysis of series-parallel resonant converter," IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 1, pp. 88-99, Jan. 1993.
[12] LRS-35-24 Data sheet, MEAN WELL Inc., 2020.
[13] SCW12B-12 Data sheet, MEAN WELL Inc., 2020.
[14] SCWN03B-12 Data sheet, MEAN WELL Inc., 2020.
[15] SN74ACT74 Data sheet, Texas Instruments Inc., 2003.
[16] Si8610BC Data sheet, Silicon Labs Inc., 2019.
[17] LM5114B Data sheet, Texas Instruments Inc., 2015.
[18] DRF1200 Data Sheet, Microsemi Inc., 2013.
[19] DRF1400 Data Sheet, Microsemi Inc., 2012.
[20] GS66508B Data Sheet, GaN Systems Inc., 2020.
[21] GS66516T Data Sheet, GaN Systems Inc., 2020.
[22] GS-065-060-5-T-A Data Sheet, GaN Systems Inc., 2020
[23] EPC2033 Data sheet, Efficient Power Conversion Inc., 2020.
[24] EPC2215 Data sheet, Efficient Power Conversion Inc., 2020.
[25] HQ Series Data sheet, AVX Inc., 2017.
[26] 史密斯圖使用方法。
網站:https://www.strongpilab.com/smith-chart-how-to-use/
[27] 蔡政憲,防護線對高速數位信號在板級的電磁干擾影響探討,國立交通大學電機學院碩士在職專班電機與控制組,碩士論文,2009。
[28] 周韋辰,內視鏡滅菌用射頻電漿源研製,國立清華大學電機工程學系碩士班電力組,碩士論文,2020。