研究生: |
黃士修 Huang, Shih-Hsiu |
---|---|
論文名稱: |
Fault-Tolerant 3D Clock Network 三維晶片時脈樹的容錯設計 |
指導教授: |
張世杰
Chang, Shih-Chieh |
口試委員: |
張世杰
黃婷婷 黃世旭 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 34 |
中文關鍵詞: | 三維時脈樹 、矽晶穿孔 、容錯設計 |
外文關鍵詞: | 3D clock network, 3D clock tree, TSV, fault tolerance |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Clock tree synthesis is one of the most important and challenging problems in 3D ICs. The clock signals have to be delivered by through-silicon vias (TSVs) to different tiers with minimum skew and latency. While there are a few related works in literature, none of them considers the reliability of TSVs. Accordingly, the failure of any TSV in the clock tree yields a bad chip. The naive solution using double-TSV can alleviate the problem. But the significant area overhead renders it less practical for large designs.
In this thesis, a novel TSV fault-tolerant unit (TFU) is proposed, which can provide tolerance against TSV failures in a 3D clock network. It makes use of the existing 2D redundant trees designed for pre-bond testing, and thus has minimum area overhead. Compared to the double TSV technique, the 3D clock network constructed by our TFUs can achieve 53% area reduction and while maintaining the yield rate. To the best of the author’s knowledge, this is the first practical work in literature that considers the fault tolerance of a 3D clock network.
在三維晶片相關的研究中,時脈樹合成的問題是最重要也最具有挑戰性的,時脈訊號在三維晶片中必須在最小的偏差與延遲的情況下,透過矽晶穿孔的結構將訊號傳遞到不同的晶片層。而在先期的研究中,與這方面相關的並不多,同時也沒有任何研究考慮到矽晶穿孔的可靠性,但是在時脈樹中任何矽晶穿孔的損壞都可能造成整顆晶片無法使用。一個簡單的解決方法是使用雙矽晶穿孔,但是這個方法可能會使用過多的晶片面積而不適用於較大規模的晶片上。
在這篇論文中,我們提出一個新的矽晶穿孔容錯設計,藉由使用堆疊三維晶片前測試用的冗餘時脈樹,來增加時脈樹對矽晶穿孔的容錯能力,因為是使用現有的結構,所以這個設計可以使用較小的面積來達成。相較於雙矽晶穿孔的方法,我們的設計可以少使用53%的面積就可以達到跟雙矽晶穿孔一樣的良率,另外,就我們所知我們的方法是第一個在三維晶片中的容錯時脈設計。
[1] Albrecht, C., Kahng, A. B., Liu, B., Mandoiu, I. I., and Zelikovsky, A. Z. 2003. On the skew-bounded minimum-buffer routing tree problem. IEEE Trans. CAD. 22, 7 (Jul. 2003), 937-945. DOI= http://dx.doi.org/10.1109/TCAD.2003.814238.
[2] Arunachalam, V. and Burleson, W. 2008. Low-power clock distribution in a multilayer core 3d microprocessor. In Proceedings of the 18th ACM Great Lakes symposium on VLSI (Orlando, Florida, May 04-06, 2008). GLSVLSI '08. ACM, New York, NY, 429-434.
[3] Cong, J., Kahng, A. B., and Robins, G. 1993. Matching-based methods for high-performance clock routing. IEEE Trans. CAD. 12, 8 (Aug. 1993), 1157-1169. DOI= http://dx.doi.org/10.1109/43.238608.
[4] Davis, W. R. and et al. 2005. Demystifying 3d ics: the pros and cons of going vertical. IEEE Design and Test of Computers. 22, 6 (Nov. 2005), 498-510. DOI= http://dx.doi.org/10.1109/MDT.2005.136.
[5] Edahiro, M. 1994. An efficient zero-skew routing algorithm. In Proceedings of the 31st annual Design Automation Conference. DAC '94. ACM, New York, NY, 375-380. DOI= http://doi.acm.org/10.1145/196244.196426.
[6] Hsieh, A. C., Hwang, T. T., Chang, M. T., Tsai, M. H., Tseng, C. M., and Li, H. C. 2010. TSV redundancy: architecture and design issues in 3D IC. In Proceedings of the Conference on Design, Automation and Test in Europe (Dresden, Germany, March 08-12, 2010). DATE '10. European Design and Automation Association, 3001 Leuven, Belgium, Belgium, 166-171.
[7] Hu, S., Alpert, C. J., Hu, J., Karandikar, S. K., Li, Z., Shi, W., and Sze, C. N. 2007. Fast algorithms for slew-constrained minimum cost buffering. IEEE Trans. CAD. 26, 11 (Nov. 2007), 2009-2022. DOI= http://dx.doi.org/10.1109/TCAD.2007.906477.
[8] Kang, U. and et al. 2009. 8Gb 3D DDR3 DRAM using through-silicon-via technology. IEEE ISSCC. 130-132. DOI= http://dx.doi.org/10.1109/ISSCC.2009.4977342.
[9] Kao, Y. C., Chou, H. M., Tsai, K. T., and Chang, S. C. 2010. An efficient phase detector connection structure for the skew synchronization system. In Proceedings of the 47th Design Automation Conference (Anaheim Convention Center, June 13-18, 2010). DAC '10. ACM, New York, NY, 729-734. DOI= http://doi.acm.org/10.1145/1837274.1837457.
[10] Kawano, M. and et al. 2006. A 3D packaging technology for 4 Gbit stacked DRAM with 3 Gbps data transfer. IEDM Dig. Tech. Papers. 581-584.
[11] Kim, T. Y. and Kim, T. 2010. Clock tree synthesis with pre-bond testability for 3D stacked IC designs. In Proceedings of the 47th Design Automation Conference (Anaheim Convention Center, June 13-18, 2010). DAC '10. ACM, New York, NY, 723-728. DOI= http://doi.acm.org/10.1145/1837274.1837456.
[12] Laisne, M., Arabi, K., and Petrov, T. 2010. System and methods utilizing redundancy in semiconductor chip interconnects. United State Patent Application Publication. US 20100060310A1 (Mar. 11, 2010).
[13] Lewis, D. L. and Lee, H.-H. S. 2007. A scan-island based design enabling prebond testability in die-stacked microprocessors. In Proceedings of International Test Conference. ITC '07. 1-8. DOI= http://dx.doi.org/10.1109/TEST.2007.4437621.
[14] Lung, C. L., Zeng, Z. Y., Chou, C. H., and Chang, S. C. 2010. Clock skew optimization considering complicated power modes. In Proceedings of the Conference on Design, Automation and Test in Europe (Dresden, Germany, March 08-12, 2010). DATE '10. European Design and Automation Association, 3001 Leuven, Belgium, Belgium, 1474-1479.
[15] Loi, I., Mitra, S., Lee, T. H., Fujita, S., and Benini, L. 2008. A low-overhead fault tolerance scheme for TSV-based 3D network on chip links. In Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided Design (DoubleTree Hotel, San Jose, California, November 10-13, 2008). ICCAD '08. IEEE Press, Piscataway, NJ, 598-602. DOI= http://dx.doi.org/10.1109/ICCAD.2008.4681638.
[16] Minz, J., Zhao, X., and Lim, S. K. 2008. Buffered clock tree synthesis for 3D ICs under thermal variations. In Proceedings of the 2008 Asia and South Pacific Design Automation Conference (COEX, Seoul, Korea, January 21-24, 2008). ASP-DAC '08. IEEE Computer Society Press, Los Alamitos, CA, 504-509.DOI= http://dx.doi.org/10.1109/ASPDAC.2008.4484003.
[17] Mondal, M., Ricketts, A. J., Kirolos, S., Ragheb, T., Link, G., Vijaykrishnan, N., and Massoud, Y. 2007. Thermally robust clocking schemes for 3D integrated circuits. In Proceedings of the conference on Design, automation and test in Europe. DATE '07. EDA Consortium, San Jose, CA, 1206-1211. DOI= http://dx.doi.org/10.1109/DATE.2007.364459.
[18] Papanikolaou, A. and et al. 2006. Reliability issues in deep deep sub-micron technologies: time-dependent variability and its impact on embedded system design. IEDM. 342-347.
[19] Pavlidis, V. F., Savidis, I., and Friedman, E. G. 2008. Clock distribution networks for 3-D integrated circuits. In IEEE Custom Intergrated Circuits Conference. CICC '08. 651-654. DOI= http://dx.doi.org/10.1109/CICC.2008.4672170.
[20] Plas, G. V. d., and et al. 2010. Design issues and considerations for low-cost 3D TSV IC technology. IEEE ISSCC. 148-150. DOI= http://dx.doi.org/10.1109/ISSCC.2010.5434016.
[21] Su, Y. S., Hon, W. K., Yang, C. C., Chang, S. C., and Chang, Y. J. 2009. Value assignment of Adjustable Delay Buffers for clock skew minimization in multi-voltage mode designs. In Proceedings of the 2009 International Conference on Computer-Aided Design (DoubleTree Hotel, San Jose, California, November 02-05, 2009). ICCAD '09. ACM, New York, NY, 535-538. DOI= http://doi.acm.org/10.1145/1687399.1687500.
[22] Topol, A. W. and et al. 2006. Three-dimensional integrated circuits. IBM J. Res. Dev. 50, 4/5 (July 2006), 491-506.
[23] Wang, P. C., Bonaccio, A. R., Guo, J. R., and Hsu, L. L. C. 2011. Three-dimensional chip-stack synchronization. United State Patent Patent. US 7863960 B2 (Jan. 4, 2011).
[24] Yoshikawa, H. and et al. 2009. Chip-scale camera module (CSCM) using through-silicon-via (TSV). IEEE ISSCC. 476-477. DOI= http://dx.doi.org/10.1109/ISSCC.2009.4977515.
[25] Zhao, X., Lewis, D. L., Lee, H. H. S., and Lim, S. K. 2009. Pre-bond testable low-power clock tree design for 3D stacked ICs. In Proceedings of the 2009 International Conference on Computer-Aided Design (DoubleTree Hotel, San Jose, California, November 02-05, 2009). ICCAD '09. ACM, New York, NY, 184-190. DOI= http://doi.acm.org/10.1145/1687399.1687433.