簡易檢索 / 詳目顯示

研究生: 曾傑
Tseng Chieh
論文名稱: Wnt訊號傳遞路徑中β-catenin, Axin2, BTRCP和 ICAT變異參與台灣肺癌形成之機制探討
Molecular alteration analysis of the Wnt signaling pathway genes β-catenin, Axin2, BTRCP, and ICAT with lung tumorigenesis in Taiwan
指導教授: 呂平江
Lyu Ping-Ching
王憶卿
Wang Yi-Ching
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 95
中文關鍵詞: 肺癌訊息傳遞
外文關鍵詞: Wnt signaling, Lung cancer, Axin2, BTRCP, ICAT
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症自1982年起,即為台灣地區十大死亡原因之首位,儘管目前分子醫學研究已相當進步,但對於肺癌分子致癌機制仍未完全釐清。目前所知,癌症形成的原因與訊息傳遞途徑中部分的基因變異造成細胞內的調控機制發生變化有密切的關係,其中Wingless 訊息傳遞途徑 (WNT signaling pathway) 的變異在許多的癌症都有發現,而β-catenin基因是WNT signaling pathway中已知重要的致癌基因,在許多的癌症研究中都已經知道在細胞核中會有β-catenin蛋白大量累積的情況發生。因此我們首先利用免疫組織染色法分析β-catenin蛋白在78個台灣地區非小細胞肺癌 (non-small cell lung cancer, NSCLC) 病人樣本中變異的情形。研究結果顯示: 55% (43/78) 病人的細胞核中β-catenin蛋白有不正常的累積現象,同時發現這些病人多為上皮細胞肺癌 (Squamous carcinoma, SQ) (P=0.014)。另外過去的報告發現β-catenin基因的突變頻率在癌症病患中並不高,因此我們懷疑β-catenin蛋白在細胞核不正常累積的情形,可能與上游調控蛋白,如AXIN2與BTRCP降解 (protein degradation) 調控蛋白及ICAT轉錄 (transcription) 調控蛋白發生變異有關。所以本研究進一步分析78位台灣地區非小細胞肺癌病人,WNT signaling pathway中AXIN2、BTRCP及ICAT的變異。本研究利用免疫組織染色法分析AXIN2、BTRCP及ICAT蛋白低表達的頻率,並以反轉錄聚合酵素反應分析組織細胞中AXIN2、BTRCP及ICAT基因mRNA是否異常,以及偵測AXIN2,BTRCP及ICAT基因啟動子高度甲基化 (promoter hypermethylation) 及基因發生異質性喪失 (loss of heterozygosity, LOH) 頻率的變異分析。本研究結果發現AXIN2、BTRCP及ICAT任一蛋白發生變異的頻率高達67% (52/78),而且這些病人的β-catenin蛋白都有不正常累積在細胞核的情形 (P=0.036)。在AXIN2基因實驗結果部份:78位病人發現LOH的頻率為32%,啟動子高度甲基化頻率為38%,而其蛋白質和mRNA低表現頻率分別為35%和44%,並且其蛋白質和mRNA變異和早期肺癌病人有關 (P=0.047; P=0.028)。在BTRCP基因實驗結果部份: LOH的頻率為26%,啟動子高度甲基化頻率為50%,且其變異與肺癌型式為SQ和有抽菸習慣的病人有關 (P=0.001; P=0.082);蛋白質和RNA低表現頻率分別為32%和29%。在ICAT基因實驗結果部份:LOH的頻率為23%,且其變異與年紀大的病人有關 (P=0.007);啟動子高度甲基化頻率為42%,且其變異多發生在女性病患 (P=0.017);而其蛋白質和RNA低表現頻率分別為35% 和29%。
    本研究為首篇針對WNT signaling pathway中AXIN2、BTRCP及ICAT基因對細胞核中β-catenin蛋白不正常的累積關係之研究,而研究結果亦顯示:細胞核中β-catenin蛋白不正常的累積是因為上游的基因AXIN2、BTRCP及ICAT發生變異,並且AXIN2、BTRCP及ICAT基因變異主要是因為啟動子高度甲基化所致,因此我們推測 WNT signaling pathway中的β-catenin/AXIN2/BTRCP/ICAT 調控路徑變異在非小細胞肺癌的形成中扮演重要角色。


    Background: Lung cancer is the leading and second cause of cancer deaths among women and men in Taiwan, respectively. However, the molecular mechanisms involved in lung tumorigenesis in Taiwan remain poorly defined. Previous studies have shown the β-catenin plays an important role in the wingless (Wnt) signaling pathway. The β-catenin protein overexpressed in many tumors but only a few patients showed mutations in the β-catenin gene. It is possible that β-catenin protein accumulation results from alternative mechanisms other than mutation. Aim: The present study investigated the possibility of alterations of AXIN2, BTRCP, and, ICAT which are putative tumor suppressor genes in regulating the Wnt signaling pathway, leading to β-catenin protein stabilization. Patients and Methods: The alterations including promoter hypermethylation, loss of heterozygosity (LOH), low mRNA and protein expression of the AXIN2, BTRCP, and, ICAT genes were examined by the methylation specific-PCR, LOH, reverse-transcriptase PCR, and immunohistochemistry analyses, respectively, in 78 non-small cell lung cancer (NSCLC) tumorigenesis in Taiwan. Results: We found that the frequency of AXIN2 LOH and promoter hypermethylation was 32% (22/68) and 38% (30/78), respectively. In addition, 35% (27/78) and 44% (34/78) NSCLC patients had decreased or loss of AXIN2 protein and mRNA expression, respectively. The abnormal AXIN2 protein and mRNA expression was found more frequently in early-staged patients (P=0.047; P=0.028). With regard to BTRCP gene alteration analyses, the frequency of BTRCP LOH and promoter hypermethylation was 26% (14/53) and 50% (39/78), respectively. The BTRCP promoter hypermethylation was found more frequently in squamous carcinoma (SQ) and smoking patients (P=0.001; P=0.082). Note that 32% (25/78) and 29% (23/78) NSCLC patients had decreased or loss of BTRCP protein and mRNA expression, respectively. With regard to ICAT gene alteration analyses, the frequency of ICAT LOH and promoter hypermethylation was 42% (33/71) and 32% (23/78), respectively. The ICAT promoter hypermethylation was found more frequently in elderly patients (P=0.017). The ICAT LOH was found more frequently in female patients (P=0.007). There were 35% (27/78) and 29% (23/78) of NSCLC patients had decreased or loss of ICAT protein and mRNA expression, respectively. Overall, 67% (52/78) of NSCLC tumors had alteration in at least one of the three Wnt upstream effectors. The β-catenin deregulation was significantly attributable to low mRNA/protein expression of AXIN2 (P = 0.004) and BTRCP (P = 0.013). In addition, β-catenin overexpression and low expression of AXIN2/BTRCP/ICAT were frequent in SQ patients (P = 0.014). A high concordance was observed between low protein/mRNA expression and promoter hypermethylation (P < 0.001) for the AXIN2, BTRCP, and ICAT genes. Conclusion: The study was the first report which comprehensively examined the alteration of the Wnt signaling pathway genes, AXIN2, BTRCP, and ICAT at DNA, RNA and protein levels in lung cancer. Our data suggest that deregulation of the β-catenin/AXIN2/BTRCP/ICAT pathway is important in the pathogenesis of a subset of NSCLC and that promoter hypermethylation is the predominant mechanism in AXIN2, BTRCP, and ICAT alterations.

    壹、中文摘要 --------------------------------------------------------------- 1 貳、英文摘要 --------------------------------------------------------------- 3 參、文獻總論----------------------------------------------------------------- 5 一.引言------------------------------------------------------------------- 5 (一) 台灣地區肺癌的重要性------------------------------------------ 5 (二) 肺癌之相關癌症基因分類以及本研究動機依據---------------- 6 二.wnt訊號傳遞路徑與癌症形成之間的關係-------------------- 8 (一) wnt訊號傳遞路徑總覽------------------------------------------- 8 (二) wnt訊號傳遞路徑與其他癌症及肺癌之相關性報導------------ 9 三. β-catenin、AXIN2、βTRCP與ICAT之 基因結構與功能---------------------------------------------------- 10 (一) β-catenin致癌基因之結構與功能 -------------------------------- 10 (二) AXIN2基因之結構與功能------------------------------------ ----- 11 (三) BTRCP基因之結構與功能----------------------------------- ----- 11 (四) ICAT基因之結構與功能------------------------------------------- 13 四. β-catenin 致癌基因異常情形與癌症形成之間的關係------ 13 (一) β-catenin 致癌基因/蛋白在其他癌症之異常情形----------------- 13 (二) β-catenin 致癌基因/蛋白在肺癌之異常情形---------------------- 14 五.AXIN2抑癌基因異常情形與癌症形成之間的關係----------- 15 (一) AXIN2抑癌基因/蛋白在其他癌症之異常情形-------------------- 15 (二) AXIN2抑癌基因/蛋白在肺癌之異常情形------------------------- 16 六.BTRCP訊號傳遞路徑與癌症形成之間的關係---------------- 16 (一) BTRCP抑癌基因/蛋白在其他癌症之異常情形------------------- 16 (二) BTRCP抑癌基因/蛋白在肺癌之異常情形------------------------ 17 七.ICAT訊號傳遞路徑與癌症形成之間的關係------------------- 17 (一) ICAT抑癌基因/蛋白在其他癌症之異常情形--------------------- 17 (二) ICAT抑癌基因/蛋白在肺癌之異常情形--------------------------- 18 肆、研究目的-------------------------------------------------------------------19 伍、方法總論 一. 檢體來源及病歷資料----------------------------------------------- 20 二. β-catenin、AXIN2、BTRCP、ICAT蛋白表現分析------------ 20 (一) 免疫組織化學染色分析------------------------------------------- 20 (二)判讀標準------------------------------------------------------------ 21 三. AXIN2、BTRCP、ICAT 基因mRNA分析---------------------- 23 (一) RNA 萃取與cDNA製備------------------------------------------ 23 (二) Reverse-transcriptase polymerase chain reaction (RT-PCR)分析--- 23 (三) 判讀標準---------------------------------------------------------- 25 四. AXIN2、BTRCP、ICAT 基因啟動子高度甲基化分析-------- 25 (一) DNA 萃取--------------------------------------------------------- 25 (二) Methylation-specific PCR (MSP) 分析---------------------------- 26 (三) 判讀標準---------------------------------------------------------- 28 五. AXIN2、BTTRCP、ICAT 基因異質性喪失分析--------------- 29 六. 統計分析-------------------------------------------------------------- 30 陸、結果------------------------------------------------------------------------ 31 一. 探討台灣地區肺癌病人AXIN2 基因/蛋白之變異情形------ 31 (一) AXIN2 蛋白表達情形與病歷資料相關性------------------------- 31 (二) AXIN2 mRNA表達情形與病歷資料相關性----------------------- 31 (三) AXIN2基因啟動子甲基化情形與病歷資料相關性---------------- 32 (四) AXIN2基因異質性喪失情形與病歷資料相關性------------------ 32 (五) AXIN2 mRNA/蛋白不表達與啟動子高度甲基化 和基因異質性喪失情形之間相關性------------------------------- 33 二. 探討台灣地區肺癌病人BTRCP 基因/蛋白之變異情形------- 34 (一) BTRCP蛋白表達情形與病歷資料相關性------------------------- 34 (二) BTRCP mRNA表達情形與病歷資料相關性---------------------- 34 (三) BTRCP基因啟動子甲基化情形與病歷資料相關性--------------- 35 (四) BTRCP基因異質性喪失情形與病歷資料相關性----------------- 36 (五) BTRCP mRNA/蛋白不表達與啟動子高度甲基化 和基因異質性喪失情形之間相關性------------------------------- 36 三. 探討台灣地區肺癌病人ICAT基因/蛋白之變異情形--------- 37 (一) ICAT蛋白表達情形與病歷資料相關性----------------------------37 (二) ICAT mRNA表達情形與病歷資料相關性------------------------ 37 (三) ICAT基因啟動子甲基化情形與病歷資料相關--------------------38 (四) ICAT基因異質性喪失情形與病歷資料相關性------------------- 38 (五) ICAT mRNA/蛋白不表達與啟動子高度甲基化 和基因異質性喪失情形之間相關性------------------------------- 39 四. 探討台灣地區肺癌病人β-catenin蛋白變異與AXIN2、 BTRCP、ICAT蛋白相關性情形-------------------------------- - 40 (一) β-catenin蛋白表達情形與病歷資料相關性----------------------- 40 (二)探討台灣地區肺癌病人β-catenin蛋白變異與 AXIN2、BTRCP、ICAT蛋白相關性情形------------------------- 40 柒、討論------------------------------------------------------------------------ 42 捌、結論及未來應------------------------------------------------------------ 48 玖、參考文獻------------------------------------------------------------------ 49 拾、附圖------------------------------------------------------------------------ 66 拾壹、附表-------------------------------------------------------------------- 72 拾貳、附錄--------------------------------------------------------------------- 75

    Agathanggelou, A., Cooper, W, N., Latif, F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res, 65:3497-508. 2005.
    Akari, H., Bour, S., Kao, S., Adachi, A., and Strebel, K. The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the NFκB-dependent expression of antiapoptotic factors. J Exp Med, 194:1299-311. 2001.
    Behrens, J., Jerchow, BA., Wurtele, M., Grimm, J., Asbrand, C., Wirtz, R., Kuhl, M., Wedlich, D., and Birchmeier, W. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3β. Science, 280:596-9. 1998.
    Chen, C. J., You, S. L., Lin, L. H., Hsu, W. L., and Yang, Y. W. Cancer epidemiology and control in Taiwan: a brief review. Jpn J Clin Oncol, 32: S66-81., 2002.
    Chia, I, V., and Costantini, F. Mouse axin and axin2/conductin proteins are functionally equivalent in vivo. Mol Cell Biol, 25:4371-6. 2005.
    Conacci-Sorrell, M., Zhurinsky, J., and Ben-Ze'ev, A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest, 109:987-91. 2002.
    Daniels, D, L., and Weis, W, I. ICAT inhibits β-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules. Mol Cell, 10:573-84. 2002.
    De Vuyst, P., Dumortier, P., Jacobovitz, D., Emri, S., Coplu, L., and Baris, Y. I. Environmental asbestosis complicated by lung cancer. Chest, 105: 1593-1595., 1994.
    Demunter, A., Libbrecht, L., Degreef, H., De, Wolf-Peeters, C., and van den, Oord, J, J. Loss of membranous expression of β-catenin is associated with tumor progression in cutaneous melanoma and rarely caused by exon 3 mutations. Mod Pathol, 15:454-61. 2002.
    Doglioni, C., Piccinin, S., Demontis, S., Cangi, M, G., Pecciarini, L., Chiarelli, C., Armellin, M., Vukosavljevic, T., Boiocchi, M., and Maestro, R. Alterations of β-catenin pathway in non-melanoma skin tumors: loss of α-ABC nuclear reactivity correlates with the presence of beta-catenin gene mutation. Am J Pathol, 163:2277-87. 2003.
    Dong, X., Seelan, R. S., Qian, C., Mai, M., and Liu, W. Genomic structure, chromosome mapping and expression analysis of the human AXIN2 gene. Cytogenet Cell Genet, 93:26-8. 2001.
    Dorsky, R, I., Moon, R, T., and Raible, D, W. Environmental signals and cell fate specification in premigratory neural crest. Bioessays, 22:708-16. 2000.
    Fujiwara, T., Suzuki, M., Tanigami, A., Ikenoue, T., Omata, M., Chiba, T., and Tanaka, K. The BTRC gene, encoding a human F-box/WD40-repeat protein, maps to chromosome 10q24-q25. Genomics, 58:104-5. 1999.
    Gazzeri, S., Brambilla, E., Caron, de, Fromentel, C., Gouyer, V., Moro, D., Perron, P., Berger, F., and Brambilla, C. p53 genetic abnormalities and myc activation in human lung carcinoma. Int J Cancer, 58:24-32. 1994.
    Gerstein, A, V., Almeida, T, A., Zhao, G., Chess, E., Shih, IeM., Buhler, K., Pienta, K., Rubin, M, A., Vessella, R., and Papadopoulos, N. APC/CTNNB1 (β-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer, 34:9-16. 2002.
    Girard, L., Zochbauer-Muller, S., Virmani, A, K., Gazdar, A, F., and Minna, J, D. Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res, 60:4894-906. 2000.
    Goto, A., Nakajima, J., Hara, K., Niki, T., and Fukayama, M. Lung adenocarcinoma associated with familial adenomatous polyposis. Clear cell carcinoma with β-catenin accumulation accompanied by atypical adenomatous hyperplasia. Virchows Arch, 446:73-7. 2005.
    Gottardi, C, J., and Gumbiner, B, M. Role for ICAT in beta-catenin-dependent nuclear signaling and cadherin functions. Am J Physiol Cell Physiol, 286:C747-56. 2004.
    Graham, T, A., Clements, W, K., Kimelman, D., and Xu, W. The crystal structure of the beta-catenin/ICAT complex reveals the inhibitory mechanism of ICAT. Mol Cell, 10:563-71. 2002.
    Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H, Perret C, Rubinfeld B, Margottin F, Benarous R, Polakis P. The F-box protein BTrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol, 9:207-10. 1999.
    Hart, M, J., de, los, Santos, R., Albert, I, N., Rubinfeld, B., and Polakis, P. Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, beta-catenin and GSK3β. Curr Biol, 8:573-81. 1998.
    Hays, R., Gibori, G, B., and Bejsovec, A. Wingless signaling generates pattern through two distinct mechanisms. Development, 124:3727-36. 1997.
    He, N., Li, C., Zhang, X., Sheng, T., Chi, S., Chen, K., Wang, Q., Vertrees, R., Logrono, and R., Xie, J. Regulation of lung cancer cell growth and invasiveness by BTRCP. Mol Carcinog, 42:18-28. 2005.
    Hommura, F., Furuuchi, K., Yamazaki, K., Ogura, S., Kinoshita, I., Shimizu, M., Moriuchi, T., Katoh, H., Nishimura, M., and Dosaka-Akita, H. Increased expression of beta-catenin predicts better prognosis in nonsmall cell lung carcinomas. Cancer, 94:752-8. 2002.
    Honma, H. Classification of lung cancer by disease stage, symptom type and histological type. Naika, 18: 832-836., 1966.
    Hughes, T, A., and Brady, H, J. Expression of axin2 is regulated by the alternative 5'-untranslated regions of its mRNA. J Biol Chem, 280:8581-8.2004.
    Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., and Kikuchi, A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J, 17:1371-84. 1998.
    Imai, M., Nakamura, T., Akiyama, T., and Horii, A. Infrequent somatic mutations of the ICAT gene in various human cancers with frequent 1p-LOH and/or abnormal nuclear accumulation of beta-catenin. Oncol Rep, 12:1099-103. 2004.
    Ishigaki, K., Namba, H., Nakashima, M., Nakayama, T., Mitsutake, N., Hayashi, T., Maeda, S., Ichinose, M., Kanematsu, T., and Yamashita, S. Aberrant localization of β-catenin correlates with overexpression of its target gene in human papillary thyroid cancer. J Clin Endocrinol Metab, 87:3433-40. 2002.
    Ishizaki, Y., Ikeda, S., Fujimori, M., Shimizu, Y., Kurihara, T., Itamoto, T., Kikuchi, A., Okajima, M., and Asahara, T. Immunohistochemical analysis and mutational analyses of β-catenin, Axin family and APC genes in hepatocellular carcinomas. Int J Oncol, 24:1077-83. 2004.
    Iwaya, K., Ogawa, H., Kuroda, M., Izumi, M., Ishida, T., and Mukai, K. Cytoplasmic and/or nuclear staining of β-catenin is associated with lung metastasis. Clin Exp Metastasis, 20:525-9. 2003.
    Jho, E. H., Zhang, T., Domon, C., Joo, C. K., Freund, J. N., and Costantini, F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol, 22: 1172-1183., 2002.
    Johnson, V., Volikos, E., Halford, S, E., Eftekhar, Sadat, E, T., Popat, S., Talbot, I., Truninger, K., Martin, J., Jass, J., Houlston, R., Atkin, W., Tomlinson, I, P., and Silver, A, R. Exon 3 β-catenin mutations are specifically associated with colorectal carcinomas in hereditary non-polyposis colorectal cancer syndrome. Gut. 54:264-7. 2005.
    Kase, S., Sugio, K., Yamazaki, K., Okamoto, T., Yano, T., and Sugimachi, K. Expression of E-cadherin and beta-catenin in human non-small cell lung cancer and the clinical significance. Clin Cancer Res, 6:4789-96. 2000.
    Katoh M. Molecular cloning and characterization of LZIC, a novel gene encoding ICAT homologous protein with leucine zipper domain. Int J Mol Med, 8:611-5. 2001.
    Kikuchi, A. Roles of Axin in the Wnt signalling pathway. Cell Signal, 11:777-88. 1999.
    Kitagawa, M., Hatakeyama, S., Shirane, M., Matsumoto, M., Ishida, N., Hattori, K., Nakamichi, I., Kikuchi, A., and Nakayama, K. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. Embo J, 18: 2401-2410. 1999.
    Koch, A., Weber, N., Waha, A., Hartmann, W., Denkhaus, D., Behrens, J., Birchmeier, W., von, Schweinitz, D., and Pietsch, T. Mutations and elevated transcriptional activity of conductin (AXIN2) in hepatoblastomas. J Pathol, 204:546-54. 2004.
    Kolble, K., Barthel, B., Ullrich, O., Pidde, H., Dohring, C., Ruschoff, J., Schlag, P, M., and Dietel, M. β-Catenine as a genomic target of high-grade microsatellite instability in colorectal cancer. Verh Dtsch Ges Pathol, 84:182-6. 2000.
    Kotsinas, A., Evangelou, K., Zacharatos, P., Kittas, C., and Gorgoulis, V. G. Proliferation, but not apoptosis, is associated with distinct beta-catenin expression patterns in non-small-cell lung carcinomas: relationship with adenomatous polyposis coli and G(1)-to S-phase cell-cycle regulators. Am J Pathol, 161: 1619-1634., 2002.
    Koyama, T., Tago, K., Nakamura, T., Ohwada, S., Morishita, Y., Yokota, J., and Akiyama, T. Mutation and expression of the beta-catenin-interacting protein ICAT in human colorectal tumors. Jpn J Clin Oncol. 32:358-62. 2002.
    Kraus, C., Liehr, T., Hulsken, J., Behrens, J., Birchmeier, W., Grzeschik, K, H., and Ballhausen, W, G. Localization of the human β-catenin gene (CTNNB1) to 3p21: a region implicated in tumor development. Genomics, 23:272-4. 1994.
    Kroll, M., Margottin, F., Kohl, A., Renard, P., Durand, H., Concordet, J, P., Bachelerie, F., Arenzana-Seisdedos, F., and Benarous, R. Inducible degradation of IkappaBalpha by the proteasome requires interaction with the F-box protein h-BTRCP. J Biol Chem, 274:7941-5. 1999.
    Kudo, Y., Guardavaccaro, D., Santamaria, P, G., Koyama-Nasu, R., Latres, E., Bronson, R., Yamasaki, L., and Pagano, M. Role of F-box protein BTRCP1 in mammary gland development and tumorigenesis. Mol Cell Biol, 24:8184-94. 2004.
    Kurihara, T., Ikeda, S., Ishizaki, Y., Fujimori, M., Tokumoto, N., Hirata, Y., Ozaki, S., Okajima, M., Sugino, K., and Asahara, T. Immunohistochemical and sequencing analyses of the Wnt signaling components in Japanese anaplastic thyroid cancers. Thyroid, 14:1020-9. 2004.
    Lammi, L., Arte, S., Somer, M., Jarvinen, H., Lahermo, P., Thesleff, I., Pirinen, S., and Nieminen, P. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet, 74:1043-50. 2004.
    Latres, E., Chiaur, D, S., and Pagano, M. The human F box protein BTRCP associates with the Cul1/SKP1 complex and regulates the stability of beta-catenin. Oncogene, 18:849-54. 1999.
    Li, C, M., Kim, C, E., Margolin, A, A., Guo, M., Zhu, J., Mason, J, M., Hensle, T, W., Murty, V, V., Grundy, P, E., Fearon, E, R., D'Agati, V., Licht, J, D., and Tycko, B. CTNNB1 mutations and overexpression of Wnt/beta-catenin target genes in WT1-mutant Wilms' tumors. Am J Pathol, 165:1943-53. 2004.
    Liloglou, T., Maloney, P., Xinarianos, G., Hulbert, M., Walshaw, M. J., Gosney, J. R., Turnbull, L., and Field, J. K. Cancer-specific genomic instability in bronchial lavage: a molecular tool for lung cancer detection. Cancer Res, 61: 1624-1628., 2001.
    Lindop, P. J. and Rotblat, J. Induction of lung tumours by the action of radiation and urethane. Nature, 210: 1392-1393., 1966.
    Liu, W., Dong, X., Mai, M., Seelan, R, S., Taniguchi, K., Krishnadath, K, K., Halling, K, C., Cunningham, J, M., Boardman, L, A., Qian, C., Christensen, E., Schmidt, S, S., Roche, P, C., Smith, D, I., and Thibodeau, S, N. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet, 26:146-7. 2000.
    Lustig, B., Jerchow, B., Sachs, M., Weiler, S., Pietsch, T., Karsten, U., van de Wetering, M., Clevers, H., Schlag, P. M., Birchmeier, W., and Behrens, J. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol, 22: 1184-1193., 2002.
    Mai, M., Qian, C., Yokomizo, A., Smith, D. I., and Liu, W. Cloning of the human homolog of conductin (AXIN2), a gene mapping to chromosome 17q23-q24. Genomics, 55: 341-4. 1999.
    Margottin, F., Bour, S, P., Durand, H., Selig, L., Benichou, S., Richard, V., Thomas, D., Strebel, K., and Benarous, R. A novel human WD protein, h-BTRCP, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell, 1:565-74. 1998.
    Mazieres, J., He, B., You, L., Xu, Z., and Jablons, D, M. Wnt signaling in lung cancer. Cancer Lett, 222:1-10. 2005.
    McCrea, P, D., Turck, C, W., and Gumbiner, B. A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science, 254:1359-61. 1991.
    Minna, J. D., Sekido, Y., Fong, K., and Gazdar, A. F. Cancer, 5 edition, p. 849-857: Lippincott: Philadelphia. 1997.
    Mirabelli-Primdahl, L., Gryfe, R., Kim, H., Millar, A., Luceri, C., Dale, D., Holowaty, E., Bapat, B., Gallinger, S., and Redston, M. Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Res, 59:3346-51. 1999.
    Moreno-Bueno, G., Hardisson, D., Sanchez, C., Sarrio, D., Cassia, R., Garcia-Rostan, G., Prat, J., Guo, M., Herman, J, G., Matias-Guiu, X., Esteller, M., and Palacios, J. Abnormalities of the APC/beta-catenin pathway in endometrial cancer. Oncogene, 21:7981-90. 2002.
    Morin, P. J., Sparks, A. B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B., and Kinzler, K. W. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 275: 1787-1790. 1997.
    Murai, Y., Hayashi, S., Takahashi, H., Tsuneyama, K., and Takano, Y. Correlation between DNA alterations and p53 and p16 protein expression in cancer cell lines. Pathol Res, 201:109-15. 2005.
    Naylor, S, L., Johnson, B, E., Minna, J, D., and Sakaguchi, A, Y. Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer. Nature. 329:451-4. 1987.
    Nollet, F., Berx, G., Molemans, F., and van, Roy, F. Genomic organization of the human beta-catenin gene (CTNNB1). Genomics, 32:413-24. 1996.
    Ohgaki, H., Kros, J, M., Okamoto, Y., Gaspert, A., Huang, H., and Kurrer, M, O. APC mutations are infrequent but present in human lung cancer. Cancer Lett, 207:197-203. 2004.
    Ougolkov, A., Zhang, B., Yamashita, K., Bilim, V., Mai, M., Fuchs, S, Y., and Minamoto, T. Associations among beta-TrCP, an E3 ubiquitin ligase receptor, beta-catenin, and NF-κB in colorectal cancer. J Natl Cancer Inst, 96:1161-70. 2004.
    Peterlongo, P., Howe, L, R., Radice, P., Sala, P., Hong, Y, J., Hong, S, I., Mitra, N., Offit, K., and Ellis, N, A. Germline mutations of AXIN2 are not associated with nonsyndromic colorectal cancer. Hum Mutat, 25:498-500. 2005.
    Petersen, S., Wolf, G., Bockmuhl, U., Gellert, K., Dietel, M., and Petersen, I. Allelic loss on chromosome 10q in human lung cancer: association with tumour progression and metastatic phenotype. Br J Cancer, 77:270-6. 1998.
    Polakis P. Wnt signaling and cancer. Gene Dev, 14:1837-51. 2000.
    Reifenberger, J., Knobbe, C, B., Wolter, M., Blaschke, B., Schulte, K, W., Pietsch, T., Ruzicka, T., and Reifenberger, G. Molecular genetic analysis of malignant melanomas for aberrations of the WNT signaling pathway genes CTNNB1, APC, ICAT and BTRC. Int J Cancer, 100:549-56. 2002.
    Retera, J. M., Leers, M. P., Sulzer, M. A., and Theunissen, P. H. The expression of beta-catenin in non-small-cell lung cancer: a clinicopathological study. J Clin Pathol, 51: 891-894., 1998.
    Saitoh, T., and Katoh, M. Expression profiles of betaTRCP1 and betaTRCP2, and mutation analysis of betaTRCP2 in gastric cancer. Int J Oncol, 18:959-64. 2001.
    Salahshor, S. and Woodgett, J. R. The links between axin and carcinogenesis. J Clin Pathol, 58: 225-36. 2005.
    Samet, J. M. Environmental causes of lung cancer: what do we know in 2003? Chest, 125: 80-83. 2004.
    Sawyer, E, J., Hanby, A, M., Rowan, A, J., Gillett, C, E., Thomas, R, E., Poulsom, R., Lakhani, S, R., Ellis, I, O., Ellis, P., and Tomlinson, I, P. The Wnt pathway, epithelial-stromal interactions, and malignant progression in phyllodes tumours. J Pathol, 196:437-44. 2002.
    Shigemitsu, K., Sekido, Y., Usami, N., Mori, S., Sato, M., Horio, Y., Hasegawa, Y., Bader, S, A., Gazdar, A, F., Minna, J, D., Hida T., Yoshioka, H., Imaizumi, M., Ueda, Y., Takahashi, M., and Shimokata, K. Genetic alteration of the beta-catenin gene (CTNNB1) in human lung cancer and malignant mesothelioma and identification of a new 3p21.3 homozygous deletion. Oncogene, 20:4249-57. 2001.
    Shiina, H., Igawa, M., Shigeno, K., Terashima, M., Deguchi, M., Yamanaka, M., Ribeiro-Filho, L., Kane, C, J., and Dahiya, R. Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 Genes in bladder cancer. J Urol, 168:2220-6. 2002.
    Smalley, M. J., Sara, E., Paterson, H., Naylor, S., Cook, D., Jayatilake, H., Fryer, L. G., Hutchinson, L., Fry, M. J., and Dale, T. C. Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J, 18:2823-35. 1999.
    Somiari, R, I., Somiari, S., Russell, S., and Shriver, C, D. Proteomics of breast carcinoma. J Chromatogr B Analyt Technol Biomed Life Sci, 815:215-25. 2005.
    Spiegelman, V, S., Slaga, T, J., Pagano, M., Minamoto, T., Ronai, Z., and Fuchs, S, Y. Wnt /β-catenin signaling induces the expression and activity of betaTrCP ubiquitin ligase receptor. Mol Cell, 5:877-82. 2000.
    Sunaga, N., Kohno, T., and Yokota, J. Wnt signaling abnormalities in human lung cancer. Nippon Rinsho, 60 Suppl 5:733-6. 2002.
    Sunaga, N., Kohno, T., Kolligs, F, T., Fearon, E, R., Saito, R., and Yokota, J. Constitutive activation of the Wnt signaling pathway by CTNNB1 (β-catenin) mutations in a subset of human lung adenocarcinoma. Genes Chromosomes Cancer, 30:316-21. 2001.
    Suriano, G., Vrcelj, N., Senz, J., Ferreira, P., Masoudi, H., Cox, K., Nabais, S., Lopes, C., Machado, J, C., Seruca, R., Carneiro, F., and Huntsman, D, G. β-catenin (CTNNB1) gene amplification: a new mechanism of protein overexpression in cancer. Genes Chromosomes Cancer, 42:238-46. 2005.
    Suzuki, H., Watkins, D, N., Jair, K, W., Schuebel, K, E., Markowitz, S, D., Chen, W, D., Pretlow, T, P., Yang, B., Akiyama, Y., Van, Engeland, M., Toyota, M., Tokino, T., Hinoda, Y., Imai K., Herman, J, G., and Baylin, S, B. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet, 36:417-22. 2004.
    Tago, K., Nakamura, T., Nishita, M., Hyodo, J., Nagai, S., Murata, Y., Adachi, S., Ohwada, S., Morishita, Y., Shibuya, H., and Akiyama, T. Inhibition of Wnt signaling by ICAT, a novel β-catenin-interacting protein. Genes Dev, 14:1741-9. 2000.
    Tammemagi, C. M., Neslund-Dudas, C., Simoff, M., and Kvale, P. Smoking and lung cancer survival: the role of comorbidity and treatment. Chest, 125: 27-7. 2004.
    Tang, X, J., Zhou, Q, H., Zhang, S, F., and Liu, L, X. Expressions of Nm23, E-cadherin, and β-Catenin in Non-small Cell Lung Cancer and Their Correlations with Metastasis and Prognosis. Ai Zheng, 24:616-21. 2005.
    Taniguchi, K., Roberts, L, R., Aderca, I, N., Dong, X., Qian, C., Murphy, L, M., Nagorney, D, M., Burgart, L, J., Roche, P, C., Smith, D, I., Ross, J, A., and Liu, W. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene, 21:4863-71. 2002.
    Tejpar, S., Michils, G., Denys, H., Van, Dam, K., Nik, S, A., Jadidizadeh, A., and Cassiman, J, J. Analysis of Wnt/β-catenin signalling in desmoid tumors. Acta Gastroenterol Belg, 68:5-9. 2005.
    Testa, J, R., Liu, Z., Feder, M., Bell, D, W., Balsara, B., Cheng, J, Q., and Taguchi, T. Advances in the analysis of chromosome alterations in human lung carcinomas. Cancer Genet Cytogenet, 95:20-32. 1997.
    Thorstensen, L., Lind, G, E., Lovig, T., Diep, C, B., Meling, G, I., Rognum, T, O., and Lothe, R, A. Genetic and epigenetic changes of components affecting the WNT pathway in colorectal carcinomas stratified by microsatellite instability. Neoplasia, 7:99-108. 2005.
    Tong, J, H., To, K, F., Ng, E, K., Lau, J, Y., Lee, T, L., Lo, K, W., Leung, W, K., Tang, N, L., Chan, F, K., Sung, J, J., and Chung, S, C. Somatic beta-catenin mutation in gastric carcinoma--an infrequent event that is not specific for microsatellite instability. Cancer Lett, 163:125-30. 2001.
    Tseng, R. C., Chang, J. W., Hsien, F. J., Chang, Y. H., Hsiao, C. F., Chen, C. Y., Jou, Y. S., and Wang, Y. C. Genome-wide loss of heterozygosity and its clinical associations in non-small cell lung cancer. Int J Cancer. In press, 2005.
    Tzao,C., Tsai, H, Y., Chen, J, T., Chen, C, Y., and Wang, Y,C. 5'CpG island hypermethylation and aberrant transcript splicing both contribute to the inactivation of the FHIT gene in resected non-small cell lung cancer. Eur J Cancer, 40:2175-83. 2004.
    Ueda, M., Gemmill, R, M., West, J., Winn, R., Sugita, M., Tanaka, N., Ueki, M., and Drabkin, H, A. Mutations of the β and r-catenin genes are uncommon in human lung, breast, kidney, cervical and ovarian carcinomas. Br J Cancer, 85:64-8. 2001.
    Uematsu, K., He, B., You, L., Xu, Z., McCormick, F., Jablons, and D, M. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene, 22:7218-21. 2003.
    Ueta, T., Ikeguchi, M., Hirooka, Y., Kaibara, N., and Terada, T. β-catenin and cyclin D1 expression in human hepatocellular carcinoma. Oncol Rep, 9:1197-03. 2002.
    Ushijima, T. Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer, 5: 223-31., 2005.
    Van der Wal, A. M., Huizinga, E., Orie, N. G., Sluiter, H. J., and de Vries, K. Cancer and chronic non-specific lung disease (C.N.S.L.D.). Scand J Respir Dis., 47: 161-72. 1966.
    Vencevicius, V. Surgical approach in treatment of associated lung pathology - lung cancer at tuberculosis. Medicina (Kaunas), 40: 149-51. 2004.
    Wagoner, J. K., Archer, V. E., Lundin, F. E., Jr., Holaday, D. A., and Lloyd, J. W. Radiation as the cause of lung cancer among uranum miners. N Engl J Med, 273: 181-88. 1965.
    Walsh, A, M., Bailly, G, G., Bell, D, G., Norman, R, W., Gupta, R., Zayed, E., and Nassar, B, A. Microsatellite instability in multifocal urothelial carcinoma and effect on BAX and AXIN2. Can J Urol, 10:2000-6. 2003.
    Walsh, A, M., Bailly, G, G., Bell, D, G., Norman, R, W., Gupta, R., Zayed, E., and Nassar, B, A. Microsatellite instability in multifocal urothelial carcinoma and effect on BAX and AXIN2. Can J Urol. 10:2000-6. 2003.
    Widlund, H, R., Horstmann, M, A., Price, E, R., Cui, J., Lessnick, S, L., Wu, M., He, X., and Fisher, D, E. β-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol, 158:1079-87. 2002.
    Willert, K., and Nusse, R. β-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev, 8:95-102. 1998.
    Winston, J, T., Koepp, D, M., Zhu, C., Elledge, S, J., and Harper, J, W. A family of mammalian F-box proteins. Curr Bio, 9:1180-2. 1999.
    Winston, J. T., Strack, P., Beer-Romero, P., Chu, C. Y., Elledge, S. J., and Harper, J. W. The SCF BTRCP -ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBβ and β-catenin and stimulates IκBα ubiquitination in vitro. Genes 13:270-83. 1999.
    Wodarz, A. and Nusse, R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol, 14: 59-8. 1998.
    Wright, K., Wilson, P., Morland, S., Campbell, I., Walsh, M., Hurst, T., Ward, B., Cummings, M., and Chenevix-Trench, G. β-catenin mutation and expression analysis in ovarian cancer: exon 3 mutations and nuclear translocation in 16% of endometrioid tumours. Int J Cancer, 82:625-9. 1999.
    Wu, R., Zhai, Y., Fearon, E, R., and Cho, K, R. Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res, 61:8247-55. 2001.
    Yan, D., Wiesmann, M., Rohan, M., Chan, V., Jefferson, A. B., Guo, L., Sakamoto, D., Caothien, R. H., Fuller, J. H., Reinhard, C., Garcia, P. D., Randazzo, F. M., Escobedo, J., Fantl, W. J., and Williams, LT. Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta -catenin signaling is activated in human colon tumors. Proc Natl Acad Sci U S A, 98:14973-8. 2001.
    Yu, H, M., Jerchow, B., Sheu, T, J., Liu, B., Costantini, F., Puzas, J, E., Birchmeier, W., and Hsu, W. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development, 132:1995-2005. 2005.
    Zhai, Y., Wu, R., Schwartz, D, R., Darrah, D., Reed, H., Kolligs, F, T., Nieman, M, T., Fearon, E, R., and Cho, K, R. Role of β-catenin /T-cell factor-regulated genes in ovarian endometrioid adenocarcinomas. Am J Pathol, 160:1229-38. 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE