簡易檢索 / 詳目顯示

研究生: 哈里
Haridharan
論文名稱: 鈷金屬催化加成反應及銠金屬催化碳—氫鍵活化 與環化反應之研究
Cobalt-Catalyzed Addition and Rhodium-Catalyzed C−H Bond Activation and Cyclization Reactions
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 鄭建鴻
Chien-Hong Cheng
蔡易州
Yi-Chou Tsai
彭之皓
Chi-How Peng
莊士卿
Shih-Ching Chuang
謝仁傑
Jen-Chieh Hsieh
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 234
中文關鍵詞: 鈷金屬錯合物催化N-三甲基乙酰基苯胺碳-氫鍵活化銠金屬錯合物催化酮肟
外文關鍵詞: cobalt catalyzed, N-phenyl pivalamide, C-H activation, rhodium catalyzed, ketoximes
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Aryl-aryl bond formation is one of the most important tools of modern organic synthesis. These bonds are very often found in natural products such as alkaloids as well as in numerous biologically active parts of pharmaceutical and agrochemical specialities. Particularly, C−H bond activation reactions are competent method to synthesis biologically important compounds in a highly regio- and stereoselective manner. In this regard, this thesis describes new reactions that focus on the addition of arylboronic acids with
    2-phenoxyacetonitriles, 2-(2-formylphenoxy)acetonitriles, which were successfully achieved by cobalt catalyst system. The C−H functionalization of iodobenzenes with
    N-phenylpivalamides and phenylboronic acids with ketoximes, aromatic acids to afford various functionalized biaryls. On the other hand multiple C−H activations of ketoximes with phenylboronic acids afforded biologically active phenanthridine derivatives in one-pot manner. For better understanding, I divided this thesis into four chapters. The first chapter describe about cobalt-catalyzed addition reactions of phenoxyacetonitriles and
    2-(2-formylphenoxy)acetonitriles with organoboronic acids. Next three chapters describe about rhodium-catalyzed directing group assisted C−H activation and cyclization reactions of anilides, ketoximes and aromatic acids with organoboronic acids and iodobenzenes.

     Chapter 1 describes about direct synthesis of arylketones by cobalt-catalyzed addition of arylboronic acids with phenoxyacetonitriles to give biologically useful, biaryl ketones in excellent yields.

     Chapter 2 deals about first example of rhodium-catalyzed ortho arylation of
    N-phenylpivalamides with iodo benzenes.

     Chapter 3 illustrates a rhodium-catalyzed oxidative C−H coupling of ketoximes with arylboronic acids: One-pot synthesis of phenanthridines.

     Chapter 4 explains a rhodium catalyzed oxidative C−H coupling of aromatic acids with arylboronic acids.


    芳基 - 芳基鍵的形成,是現代有機合成領域中最重要的工具之一。這些鍵結結構經常在天然物中發現,如生物鹼,以及在醫藥和農業化學品方面。特別是碳-氫鍵活化反應的方法來合成具有生物活性化合物,存在著高度位置選擇性與立體選擇性。在這方面,本文的描述著眼於芳基硼酸與苯氧乙腈、2-(2-甲酰基苯氧基)乙腈之加成反應,成功地以鈷金屬錯合物催化此類型反應。經由 碘苯、N-三甲基乙酰基苯胺、苯硼酸與酮肟、芳族羧酸的碳-氫鍵官能化反應,得到各種官能化之聯芳基。關於酮肟與苯硼酸在多步碳-氫鍵活化之一鍋化反應,得到具有生物活性的菲啶衍生物。為了清楚地說明,將論文分為四個章節。第一章描述關於苯氧乙腈與2 -(2-甲酰基苯氧基)乙腈和有機硼酸的鈷催化加成反應。接下來的三個章節介紹有關碳-氫鍵活化反應之酰苯胺類、酮肟與芳香族氨基酸、有機硼酸和碘苯的銠金屬錯合物催化環化反應。

     第1章介紹鈷金屬錯合物催化芳基硼酸與苯氧乙腈,合成具有生物活性之高產率芳基酮化合物。

     第2章介紹有關第一個以銠金屬錯合物催化N-三甲基乙酰基苯胺與碘苯之鄰位芳基化反應。

     第3章說明銠金屬錯合物催化一鍋化碳-氫鍵官能化反應,酮肟與芳基硼酸之偶聯反應以合成菲啶衍生物。

     第4章介紹銠金屬錯合物催化芳香酸與芳基硼酸之碳-氫鍵偶合反應。

    ABSTRACT III LIST OF SCHEMES VII LIST OF TABLES VIII ABBREVIATIONS X LIST OF PUBLICATIONS XII CHAPTER 1: Direct Synthesis of Arylketones by Cobalt-Catalyzed Addition of Arylboronic Acids with Phenoxyacetonitrile 1 1.1 Introduction 2 1.2 Results and Discussion 6 1.3 Proposed Mechanism 14 1.4 Conclusion 15 1.5 Experimental Section 15 1.6 Spectroscopic Data 17 1.7 References 31 CHAPTER 2: First Example of Rhodium-Catalyzed ortho-Arylation of Anilides with Aryl Halides. 34 2.1 Introduction 35 2.2 Results and Discussion 41 2.3 Proposed Mechanism 49 2.4 Conclusion 52 2.5 Experimental Section 52 2.6 Spectroscopic Data 55 2.7 References 69 CHAPTER 3: Rhodium(III)-Catalyzed Oxidative C−H Coupling of Ketoximes with Arylboronic Acids. One-Pot Synthesis of Phenanthridines 74 3.1 Introduction 75 3.2 Results and Discussion 79 3.3 Proposed Mechanism 91 3.4 Conclusion 92 3.5 Experimental Section 93 3.6 Synthetic Procedures 93 3.7 Spectroscopic Data 94 3.8 References 113 CHAPTER 4: Rhodium(III)-Catalyzed Oxidative C−H Coupling of Aromatic Acids with Arylboronic Acids 116 4.1 Introduction 117 4.2 Results and Discussion 121 4.3 Proposed Mechanism 128 4.4 Conclusion 130 4.5 Experimental Section 130 4.6 Spectroscopic Data 131 4.7 References 142 1H and 13C NMR spectra 146

    Chapter-1
    1. For reviews, see: (a) J. Tsuji, Transition Metal Reagents and Catalysts; Wiley: Newyork, 2004; (b) F. Diederich, P. J. Stang, Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH: Weinheim, 1998; (c) A. de Meijere, F. Diederich, Metal-Catalyzed Cross-Coupling Reactions, 2nd ed. John Wiley & Sons: Weinheim, Germany, 2004.
    2. M. S. Kharasch, C. F. Fuchs, J. Am. Chem. Soc. 1941, 63, 2316.
    3. For reviews, see: (a) H. Yorimitsu, K. Oshima, Pure Appl. Chem. 2006, 78, 441; (b) H. Shinokubo, K. Oshima, Eur. J. Org. Chem. 2004, 2081; (c) J. Iqbal, M. Mukhopadhyay, A. K. Mandal, Synlett 1997, 876; (d) W. Hess, J. Treutwein, G. Hilt, Synthesis 2008, 3537; (e) I. Omae, Appl. Organomet. Chem. 2007, 21, 318; (f) C. Gosmini, J.-M. Begouin, A. Moncomble, Chem. Commun. 2008, 28, 3221.
    4. H. Gilman, M. Lichtenwalter, J. Am. Chem. Soc. 1939, 61, 957.
    5. (a) M. Hudlicky, In Oxidations in Organic Chemistry; ACS Monograph 186; American Chemical Society: Washington, DC, 1990; (b) R. C. Larock, Comprehensive Organic Transformations; VCH: New York, 1989, 591.
    6. (a) G. Olah, Friedel-Crafts and Related Reactions; Interscience Publishers: New York, 1964; Vol. III, p 1259; (b) M. Osman, Helv. Chim. Acta 1982, 65, 2448; (c) H. E. Zimmerman, D. H. Paskovich, J. Am. Chem. Soc. 1964, 86, 2149; (d) F. R. Heitzler, H. Hopf, P. G. Jones, P. Bubenitschek, V. Lehne, J. Org. Chem. 1993, 58, 2781; (e) A. Ianni, S. R. Waldvogel, Synthesis 2006, 5, 2103.
    7. (a) M. H. Savari, H. Sharghi, J. Org. Chem. 2004, 69, 6953; (b) M. H. Savari, H. Sharghi, Synthesis 2004, 3, 2165; (c) H. Firouzabadi, N. Iranpoor, F. Nowrouzi, Tetrahedron 2004, 60, 10843; (d) A. Bensari, N. T. Zaveri, Synthesis 2003, 2, 267.
    8. C. Zhou, R. C. Larock, J. Am. Chem. Soc. 2004, 126, 2302.
    9. B. Zhao, X. Lu, Org. Lett. 2006, 8, 5987.
    10. H. Shimizu, M. Murakami, Chem. Commun. 2001, 2316.
    11. J. Savmarker, J. Rydfjord, J. Gising, L. R. Odell, M. Larheld, Org. Lett. 2012, 14, 2394.
    12. Y.-C. Wong, K. Parthasarathy, C.-H. Cheng, Org. Lett. 2010, 12, 1736.
    13. J. Karthikeyan, M. Jeganmohan, C.-H. Cheng, Chem. Eur. J. 2010, 16, 8989.
    14. T. Ishiyama, J. Hartwig, J. Am. Chem. Soc. 2000, 122, 12043.
    15. Q. Tian, A. A. Pletnev, R. C. Larock, J. Am. Chem. Soc. 1999, 121, 3238.
    16. V. Seenuvasan, J. Zeng, G. Balakishan, M. Antonio, X.-W. Liu, Org. Lett. 2010, 12, 352.
    17. J. Karthikeyan, K. Parthasarathy, C.-H. Cheng, Chem. Commun., 2011, 47, 10461.
    18. (a) Z. Ye, G. Lv, W. Wang, M. Zhang, J. Cheng, Angew. Chem. Int. Ed. 2010, 49, 3671; (b) Z. Ye, G. Lv, W. Wang, M. Zhang, J. Cheng, J. Org. Chem. 2010, 75, 6043; (c) F. Luo, S. Pan, C. Pan, P. Qian J. Cheng, Adv. Synth. Catal. 2011, 353, 320.
    19. (a) P.-S. Lin, M. Jeganmohan, C.-H. Cheng, Chem. Asian J. 2007, 2, 1409; (b) C.-C. Wang, P.-S. Lin, C.-H. Cheng, J. Am. Chem. Soc. 2002, 124, 9696; (c) Y.-C. Wong, K. Parthasarathy, C.-H. Cheng, J. Am. Chem. Soc. 2009, 131, 18252; (d) S. Mannathan, C.-H. Cheng, Chem. Commun. 2010, 46, 1923.

    Chapter-2
    1. For recent reviews, see: a) J.-P. Corbet and G. Mignani, Chem. Rev., 2006, 106, 2651; b) Modern Arylation Methods, ed. L. Ackermann, Wiley-VCH, Weinheim, 2009; c) G. Bringmann, T. Gulder, T. A. M. Gulder and M. Breuning, Chem. Rev., 2011, 111, 563.
    2. For recent reviews on aryl aryl bond formation, see : a) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215; b) G. P. McGlacken, L. M. Bateman, Chem. Soc. Rev. 2009, 38, 2447; c) S.-L. You, J.-B. Xia, Top. Curr. Chem. 2010, 292, 165; d) J. A. Ashenhurst, Chem. Soc. Rev. 2010, 39, 540 .
    3. a) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792; b) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; c) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48, 5094; d) O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074; e) J. Wencel-Delord, T. Dröge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740; For reviews focused on oxidative couplings, see: f) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215; g) C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011, 111, 1780.
    4. For Rh catalyzed reviews: a) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624; b) G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651; c) D. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2012, 45, 814.
    5. a) H. A. Duong, R. E. Gilligan, M. L. Cooke, R. J. Phipps, M. J. Gaunt, Angew. Chem. Int. Ed. 2011, 50, 463; b) R. J. Phipps, M. J. Gaunt, Science. 2009, 323, 1593.
    6. Recent reviews on cross-coupling of unfunctionalized arenes: a) J. A. Ashenhurst, Chem. Soc. Rev. 2010, 39, 540; b) A. Lei, W. Liu, C. Liu, M. Chen, Dalton Trans. 2010, 39, 10352; c) S.-L. You, J.-B. Xia, Top. Curr. Chem. 2010, 292, 165; d) B.-J. Li, S.-Y. Dong, Z.-J. Shi, Synlett 2008, 949.
    7. V. Ritleng, C. Sirlin, M. Pfeffer, Chem. Rev. 2002, 102, 1731.
    8. Selected examples of the Rh(III)-catalyzed oxidative coupling with alkenes; a) K. Ueura, T. Satoh, M. Miura, Org. Lett. 2007, 9, 1407; b) N. Umeda, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2009, 74, 7094; c) J. Chen, G. Song, C.-L. Pan, X. Li, Org. Lett. 2010, 12, 5426; d) F. W. Patureau, F. Glorius, J. Am. Chem. Soc. 2010, 132, 9982; e) S. Mochida, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2011, 76, 3024; f) X. Li, M. Zhao, J. Org. Chem. 2011, 76, 8530; g) A. S. Tsai, M. Brasse, R. G. Bergman, J. A. Ellman, Org. Lett. 2011, 13, 540; h) S. H. Park, J. Y. Kim, S. Chang, Org. Lett. 2011, 13, 2372; i) F. W. Patureau, T. Besset, F. Glorius, Angew. Chem. Int. Ed. 2011, 50, 1064; j) H. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang, Z.-J. Shi, J. Am. Chem. Soc. 2011, 133, 15244.
    9. Selected examples of the Rh(III)-catalyzed oxidative coupling with alkynes; a) N. Umeda, H. Tsurugi, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2008, 47, 4019; b) S. Mochida, N. Umeda, K. Hirano, T. Satoh, M. Miura, Chem. Lett. 2010, 39, 744; c) P. C. Too, Y.-F. Wang, S. Chiba, Org. Lett. 2010, 12, 5688; d) T. K. Hyster, T. Rovis, J. Am. Chem. Soc. 2010, 132, 10565; e) S. Rakshit, F. W. Patureau, F. Glorius, J. Am. Chem. Soc. 2010, 132, 9585; f) N. Umeda, K. Hirano, T. Satoh, N. Shibata, H. Sato, M. Miura, J. Org. Chem. 2011, 76, 13; g) M. P. Huestis, L. Chan, D. R. Stuart, K. Fagnou, Angew. Chem. Int. Ed. 2011, 50, 1338; h) N. Guimond, S. I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 2011, 133, 6449; i) F. W. Patureau, T. Besset, N. Kuhl, F. Glorius, J. Am. Chem. Soc. 2011, 133, 2154; j) T. K. Hyster, T. Rovis, Chem. Commun. 2011, 47, 11846; k) B.-J. Li, H.-Y. Wang, Q.-L. Zhu, Z.-J. Shi, Angew. Chem. Int. Ed. 2012, 51, 3948; l) K. Muralirajan, K. Parthasarathy, C.-H. Cheng, Angew. Chem. Int. Ed. 2011, 50, 4169; m) J. Jayakumar, K. Parthasarathy, C.-H. Cheng, Angew. Chem. Int. Ed. 2012, 51, 197; n) C.-Z. Luo, P. Gandeepan, C.-H. Cheng, Chem. Commun. 2013, 49, 8528. o) C.-Z. Luo, P. Gandeepan, J. Jayakumar, K. Parthasarathy, Y.-W. Chang, C.-H. Cheng, Chem. Eur. J. 2013, 19, 14181; p) S.-C. Chuang, P. Gandeepan, C.-H. Cheng, Org. Lett. 2013, 15, 5750.
    10. a) A. S. Tsai, M. E. Tauchert, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2011, 133, 1248; b) Y. Li, B.-J. Li, W.-H. Wang, W.-P. Huang, X.-S. Zhang, K. Chen, Z.-J. Shi, Angew. Chem. Int. Ed. 2011, 50, 2115; c) M. E. Tauchert, C. D. Incarvito, A. L. Rheingold, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2012, 134, 1482; d) Y. Li, X.-S. Zhang, H. Li, W.-H. Wang, K. Chen, B.-J. Li, Z.-J. Shi, Chem. Sci. 2012, 3, 1634; e) Y. Du, T. K. Hyster, T. Rovis, Chem. Commun. 2011, 47, 12074; f) K. D. Hesp, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2011, 133, 11430; g) C. Zhu, R. Wang, J. R. Falck, Chem. Eur. J. 2011, 17, 12591; h) J. Park, E. Park, A. Kim, Y. Lee, K.-W. Chi, J. H. Kwak, Y. H. Jung, I. S. Kim, Org. Lett. 2011, 13, 4390; i) L. Yang, C. A. Correia, C.-J. Li, Adv. Synth. Catal. 2011, 353, 1269; j) Y. Li, X.-S. Zhang, K. Chen, K.-H. He, F. Pan, B.-J. Li, Z.-J. Shi, Org. Lett. 2012, 14, 636.
    11. K. Chen, H. Li, Y. Li, X.-S. Zhang, Z.-Q. Lei, Z.-J. Shi, Chem. Sci. 2012, 3, 1645.
    12. J. Wencel-Delord, C. Nimphius, F. W. Patureau, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 2247.
    13. J. Wencel-Delord, C. Nimphius, H. Wang, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 13001.
    14. S. Fukita, Y. Inoue, S. Oi, Chem. Commun. 1998, 2439.
    15. K. Ueura, T. Satoh, M. Miura, Org. Lett. 2005, 7, 2229.
    16. V. G. Zaitsev, O. Daugulis, Angew. Chem. Int. Ed. 2005, 44, 4046.
    17. A. Lazareva, O. Daugulis, Org. Lett. 2006, 8, 5211.
    18. D. Kalyani, N. R. Deprez, L. V. Desai, M. S. Sanford, J. Am. Chem. Soc. 2005, 127, 7330.
    19. T. Satoh, K. Kawamura, M. Nomura, M. Miura, Angew. Chem. Int. Ed. 1997, 36, 1740.
    20. V. S. Thirunavukkarasu, K. Parthasarathy, C.-H. Cheng, Angew. Chem. Int. Ed. 2008, 47, 9462.
    21. W.-Y. Yu, W. N. Sit, K.-M. Lai, Z. Zhou, A. S. C. Chan, J. Am. Chem. Soc. 2008, 130, 3304.
    22. P. Gandeepan, K. Parthasarathy, C.-H. Cheng, J. Am. Chem. Soc. 2010, 132, 8569.
    23. G.-W. Wang, T.-T. Yuan, D.-D. Li, Angew. Chem. Int. Ed. 2011, 50, 1380.
    24. J. Karthikeyan, C.-H. Cheng, Angew. Chem. Int. Ed. 2011, 50, 9880.
    25. a) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48, 5094 ; b) C.-J. Li, Acc. Chem. Res. 2009, 42, 335 ; c) F. Kakiuchi, T. Kochi, Synthesis 2008, 3013 ; d) I. V. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173 ; e) T. Ishiyama, N. Miyaura, Pure Appl. Chem. 2006, 78, 1369.
    26. M. Schmid, R. Eberhardt, M. Klinga, M. Leskelae, B. Rieger, Organometallics 2001, 20, 2321.
    27. D. R. Stuart, P. Alsabeh, M. Kuhn, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 18326.
    28. a) N. Schroder, J. Wencel-Delord, F. Glorius, J. Am. Chem. Soc. 2012, 134, 8298; b) J. Ryu, K. Shin, S. H. Park, J. Y. Kim, S. Chang, Angew. Chem. Int. Ed. 2012, 51, 9904.
    29. E. M. Simmons, J. F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 3066.
    30. a) J. Xi, Q.-L. Dong, G.-S. Liu, S. Wang, L. Chen, Z.-J. Yao, Synlett. 2010, 11, 1674; b) K. Hattori, H. Yamamoto, A. Iwashita, K. Mihara, N. Matsuoka, J. Ishita, Bioorg. Med. Chem. Lett. 2005, 15, 4221.
    31. D. D. Perrin, W. L. F. Armarego, In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
    32. E. Bellamy, O. Bayh, C. Hoarau, F. Trecourt, G. Queguiner, F. Marsais, Chem. Commun. 2010, 46, 7043.

    Chapter-3
    1. (a) J. Struff, C. H. Ho¨velmann, M. Nieger, K. Mun˜iz, J. Am. Chem. Soc. 2005, 127, 14586; (b) W. C. P. Tsang, N. Zheng, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 14560; (c) H. M. L. Davies, M. S. Long, Angew. Chem., Int. Ed. 2005, 44, 3518; (d) X. Huang, K. W. Anderson, D. Zim, L. Jiang, A. Klapars, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 6653; (e) P. Mu¨ller, C. Fruit, Chem. Rev., 2003, 103, 2905.
    2. (a) J. A. Joule, K. Mills, Heterocyclic Chemistry, 4th ed, Blackwell, Oxford. 2000; (b) T. Eicher, S. Hauptmann, The Chemistry of Heterocycles, Wiley-VCH, Weinheim. 2003; (c) A. R. Katrizky, A. F. Pozharskii, Handbook of Heterocyclic Chemistry, 2nd ed, Pergamon, Amsterdam. 2000.
    3. (a) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792; (b) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174; (c) F. Kakiuchi, T. Kochi, Synthesis. 2008, 3013; (d) G. P. McGlacken, L. Bateman, Chem. Soc. Rev. 2009, 38, 2447; (e) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48, 5094; (f) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; (g) O. Daugulis, Top. Curr. Chem. 2010, 292, 57; (h) G. P. Chiusoli, M. Catellani, M. Costa, E. Motti, N. D. Ca, G. Maestri, Coord. Chem. Rev. 2010, 254, 456; (i) J. Wencel-Delord, T. Droge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740.
    4. (a) G.-W. Wang, T.-T. Yuan, D.-D. Li, Angew. Chem. Int. Ed. 2011, 50, 1380; (b) W.-C. Shih, C.-C. Teng, K. Parthasarathy, C.-H. Cheng, Angew. Chem. Int. Ed. 2011, 50, 1380; (c) J. Karthikeyan, C.-H. Cheng, Angew. Chem. Int. Ed. 2011, 50, 9880; (d) K. Parthasarathy, M. Jeganmohan, C.-H. Cheng, Org. Lett. 2008, 10, 325; (e) V. S. Thirunavukkarasu, K. Parthasarathy, C.-H. Cheng, Angew. Chem. Int. Ed. 2008, 47, 9462; (f) V. S. Thirunavukkarasu, K. Parthasarathy, C.-H. Cheng, Chem. Eur. J. 2010, 16, 1436; (g) P. Gandeepan, K. Parthasarathy, C.-H. Cheng, J. Am. Chem. Soc. 2010, 132, 8569; (h) P. Gandeepan, C.-H. Cheng, J. Am. Chem. Soc. 2012, 134, 5738; (i) K. Parthasarathy, N. Senthilkumar, J. Jayakumar, C.-H. Cheng, Org. Lett. 2012, 14, 3478.
    5. Z. Shi, D. C. Koester, M. Boultadakis-Arapinis, Frank Glorius, J. Am. Chem. Soc. 2013, 135, 12204.
    6. D.-H. Wang, M. Wasa, R. Giri, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 7190.
    7. (a) K. Ueura, T. Satoh, M. Miura, Org. Lett. 2009, 11, 5198. (b) T. Fukutani, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2011, 76, 2867.
    8. P. C. Too, Y.-F. Wang, S. Chiba, Org. Lett. 2010, 12, 5688.
    9. V. S. Thirunavukkarasu, K. Parthasarathy, C.-H. Cheng, Chem. Eur. J. 2010, 16, 1436.
    10. L. V. Desai, K. L. Hull, M. S. Sanford, J. Am. Chem. Soc. 2004, 126, 9542.
    11. D. Kalyani, K. B. McMurtrey, S. R. Neufeldt, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 18566.
    12. (a) J. Karthikeyan, R. Haridharan, C.-H. Cheng, Angew. Chem. Int. Ed. 2012, 51, 12343; (b) N. Senthilkumar, K. Parthasarathy, P. Gandeepan, C.-H. Cheng, Chem. Asian. J. 2013, 8, 2175.
    13. C. Kornhaaß, J. Li, L. Ackermann, J. Org. Chem. 2012, 77, 9190.
    14. K. Parthasarathy, M. Jeganmohan, C.-H. Cheng, Org. Lett. 2008, 10, 325.
    15. W.-C. Shih, C.-C. Teng, K. Parthasarathy, C.-H. Cheng, Chem. Asian. J. 2012, 7, 306.
    16. D. D. Perrin, W. L. F. Armarego, In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
    17. a) M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth, P. A. Grieco, Org. Lett. 2002, 4, 3199; b) F. P. Cubillo, J. S. Scott, J. C. H. Walton, J. Org. Chem. 2008, 73, 5558.

    Chapter-4
    1. Selected recent reviews: (a) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624; (b) G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651; (c) D. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2012, 45, 814; (d) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem., Int. Ed. 2009, 48, 9792; (e) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem., Int. Ed. 2009, 48, 5094; (f) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147.
    2. For reviews focused on oxidative couplings, see: a) C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215; b) C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011, 111, 1780; (c) B.-J. Li, Z.-J. Shi, Chem. Soc. Rev. 2012, 41, 5588; (d) C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Commun. 2010, 46, 677.
    3. (a) F. Kakiuchi, S. Kan, K. Igi, N. Chatani, S. Murai, J. Am. Chem. Soc. 2003, 125, 1698; (b) F. Kakiuchi, Y. Matsuura, S. Kan, N. Chatani, J. Am. Chem. Soc. 2005, 127, 5936; (c) C. G. Ravi Kiran, M. Jeganmohan, Org. Lett. 2012, 14, 5246.
    4. (a) X. Chen, C. E. Goodhue, J.-Q. Yu, J. Am. Chem. Soc. 2006, 128, 12634; (b) Z. Shi, B. Li, X. Wan, J. Cheng, Z. Fang, B. Cao, C. Qin, Y. Wang, Angew. Chem., Int. Ed. 2007, 46, 5554; (c) D.-H. Wang, M. Wasa, R. Giri, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 7190; (d) T. Nishikata, A. R. Abela, S. Huang, B. H. Lipshutz, J. Am. Chem. Soc. 2010, 132, 4978; (e) C. Sun, N. Liu, B. Li, D. Yu, Y. Wang, Z. Shi, Org. Lett. 2010, 12, 184; (f) M. J. Tredwell, M. Gulias, N. G. Bremeyer, C. C. C. Johansson, B. S. L. Collins, M. J. Gaunt, Angew. Chem. Int. Ed. 2011, 50, 1076; (g) M. Wasa, K. M. Engle, D. W. Lin, E. J. Yoo, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 19598.
    5. (a) L. J. Gooßen, N. Rodríguez, K. Gooßen, Angew. Chem. Int. Ed. 2008, 47, 3100; (b) K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788.
    6. R. C. Larock, S. Varaprath, H. H. Lau, C. A. Fellows, J. Am. Chem. Soc. 1984, 106, 5274.
    7. a) T. Yao, R. C. Larock, Tetrahedron Letters. 2002, 43, 7401; b) T. Yao, R. C. Larock, J. Org. Chem. 2003, 68, 5936; c) D. K. Rayabarapu, P. Shukla, C.-H. Cheng, Org. Lett. 2003, 5, 4903.
    8. K. Cherry, J.-L. Parrain, J. Thibonnet, A. Duchene, M. Abarbri, J. Org. Chem. 2005, 70, 6669.
    9. a) K. Ueura, T. Satoh, M. Miura, Org. Lett. 2007, 9, 1407; b) K. Ueura, T. Satoh, M. Miura, J. Org. Chem. 2007, 72, 5362.
    10. a) L. Ackermann, J. Pospech, K. Graczyk, K. Rauch, Org. Lett. 2012, 14, 930; b) R. K. Chinnagolla, M. Jeganmohan, Chem. Commun. 2012, 48, 2030.
    11. R. Giri, N. Maugel, J.-J. Li, D.-H. Wang, S. P. Breazzano, L. B. Saunders, J.-Q. Yu, J. Am. Chem. Soc. 2007, 129, 3510.
    12. D.-H. Wang, T.-S. Mei, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 17676.
    13. J. J. Mousseau, F. Valle´e, M. M. Lorion, A. B. Charette, J. Am. Chem. Soc. 2010, 132, 14412.
    14. H. A. Chiong, Q.-N. Pham, O. Daugulis, J. Am. Chem. Soc. 2007, 129, 9879.
    15. Selected examples in Rh(III) catalyzed C−H activation reactions: (a) J. Chen, G. Song, C.-L. Pan, X. Li, Org. Lett. 2010, 12, 5426; (b) F. W. Patureau, F. Glorius, J. Am. Chem. Soc. 2010, 132, 9982; (c) K. Muralirajan, K. Parthasarathy, C.-H. Cheng, Angew. Chem. Int. Ed. 2011, 50, 4169; (d) X. Li, M. Zhao, J. Org. Chem. 2011, 76, 8530; (e) A. S. Tsai, M. Brasse, R. G. Bergman, J. A. Ellman, Org. Lett. 2011, 13, 540; (f) S. H. Park, J. Y. Kim, S. Chang, Org. Lett. 2011, 13, 2372; (g) F. W. Patureau, T. Besset, F. Glorius, Angew. Chem. Int. Ed. 2011, 50, 1064; (h) H. Wang, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 7318; (i) P. C. Too, Y.-F. Wang, S. Chiba, Org. Lett. 2010, 12, 5688; (j) N. Guimond, K. Fagnou, J. Am. Chem. Soc. 2009, 131, 12050; (k) J. Jayakumar, K. Parthasarathy, C.-H. Cheng, Angew. Chem. Int. Ed. 2012, 51, 197; (l) B.-J. Li, H.-Y. Wang, Q.-L. Zhu, Z.-J. Shi, Angew. Chem. Int. Ed. 2012, 51, 3948; (m) M. P. Huestis, L. Chan, D. R. Stuart, K. Fagnou, Angew. Chem. Int. Ed. 2011, 50, 1338.
    16. (a) K. Chen, H. Li, Y. Li, X.-S. Zhang, Z.-Q. Lei, Z.-J. Shi, Chem. Sci. 2012, 3, 1645; (b) J. Wencel-Delord, C. Nimphius, F. W. Patureau, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 2247; (c) N. Kuhl, M. N. Hopkinson, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 8230; (d) J. Wencel-Delord, C. Nimphius, H. Wang, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 13001.
    17. (a) J. Karthikeyan, R. Haridharan, C.-H. Cheng, Angew. Chem. Int. Ed. 2012, 51, 12343; (b) N. Senthilkumar, K. Parthasarathy, P. Gandeepan, C.-H. Cheng, Chem. Asian. J. 2013, 8, 2175.
    18. (a) V. S. Thirunavukkarasu, K. Parthasarathy, C.-H. Cheng, Angew. Chem. Int. Ed. 2008, 47, 9462; (b) V. S. Thirunavukkarasu, K. Parthasarathy, C.-H. Cheng, Chem. Eur. J. 2010, 16, 1436; (c) P. Gandeepan, K. Parthasarathy, C-H. Cheng, J. Am. Chem. Soc. 2010, 132, 8569; (d) J. Karthikeyan, C.-H. Cheng, Angew. Chem. Int. Ed. 2011, 50, 9880; (e) P. Gandeepan, C.-H. Cheng, J. Am. Chem. Soc. 2012, 134, 5738; (f) K. Muralirajan, K. Parthasarathy, C.-H. Cheng, Org. Lett. 2012, 14, 4262.
    19. T. Muraki, H. Togo, M. Yokoyama, J. Chem. Soc. Perkin Trans. 1, 1999, 1713.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE