簡易檢索 / 詳目顯示

研究生: 張佳琳
Chang, Chia-Lin
論文名稱: 適用於電子鼻系統化學電阻式氣體感測器之適應介面電路
Adaptive Interface Circuits of Chemiresistive Gas Sensors for an Electronic Nose System
指導教授: 鄭桂忠
Tang, Kea-Tiong
口試委員: 陳新
Chen, Hsin
謝秉璇
Hsieh, Ping-Hsuan
彭盛裕
Peng, Sheng-Yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 129
中文關鍵詞: 電子鼻氣體感測器適應介面電路
外文關鍵詞: Electronic nose, Gas sensor, Adaptive interface circuit
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類不能聞有毒或具危險性的氣體,且人類對嗅覺有不同的感覺而無一定的標準。相較於傳統的大型氣體檢測儀器,電子鼻系統的體積小、成本低、功耗消耗低、可將嗅覺量化而定出標準並可長時間暴露在危險氣體,因此可以被廣泛應用到食品品質監控、環境監測、污染測量和疾病診斷等等。電子鼻系統是由氣體感測器陣列、信號擷取電路和資料識別系統所組成。氣體感測器有許多種類,我們選擇使用化學式電阻感測器中的導電聚合物氣體感測器(Conducting Polymer Gas Sensor, CP ),其感測機制為電阻值變化,此種感測器之靈敏度高,訊號讀取電路較簡單,並且可操作在室溫下,因此很適用於可攜式裝置;然而,此種感測器的電阻值容易受到溫度、濕度與背景氣味而改變,且在感測器陣列中,每個感測器會塗佈不同感測材料而有不同的電阻值。因此,本論文提出三種由TSMC 0.18μm CMOS 1P6M製程所製作之氣體感測器適應介面電路:半數位式、數位式與類比式,各別以三種不同技術消除感測器之基線電阻漂移,並將感測器訊號轉換為電訊號,首先呈現三種介面電路之模擬、量測與比較,之後將電路與導電聚合物氣體感測器相接並與氣體做反應,並呈現其讀取與辨識結果。我們也將感測器整合於半數位式與數位式介面電路,以達到微小化電子鼻晶片之目的。


    Many odors are not suitable for human to smell, such as poisonous and exhausted gases. In addition, olfaction is different from person to person. Compare to the traditional gas detection instrument, an electronic nose (E-nose) system has various advantages including small size, low cost, low power, quantization of olfaction, and the capability of being exposed to dangerous gases. Therefore, it can be applied to quality control of foods, environmental monitoring, pollution measurement and disease diagnosis, etc. E-nose system is composed of a gas sensor array, a signal acquisition circuit and a pattern recognition system. Conducting polymer sensor is one of the chemiresistive gas sensors. It has the advantages of working at room temperature, high sensitivity (about a few ppm), and its readout circuit is simple, which would be suitable for portable devices. However, the sensor resistance could be easily affected by temperature, humidity, and background odors. In addition, the resistances of each sensor in the sensor array are not the same after the deposition of different sensing materials. Therefore, an adaptive interface circuit is required to cancel the baseline drift and read the sensor signal. Three types of adaptive interface circuits fabricated by TSMC 0.18μm CMOS 1P6M processes would be introduced in this paper: semi-digital type, digital type and analog type. Simulation and measurement result of these three interface circuits would be presented and be compared. Lastly, an external conductive polymer gas sensor array connected with adaptive interface circuit was exposed to different odors, and the results were presented. Gas sensors were respectively integrated with the semi-digital type and digital type interface circuits on the same chip.

    摘 要 i ABSTRACT ii 致 謝 iii 目 錄 iv 圖 目 錄 vii 表 目 錄 xii 第1章 緒論 1 1.1 研究背景 2 1.2 研究動機與目標 3 1.3 論文架構 5 第2章 文獻回顧 6 2.1 電子鼻簡介 6 2.2 氣體感測器種類 8 2.3 導電聚合物感測器陣列 15 2.4 傳導性氣體感測器之適應介面電路 16 第3章 傳導性感測器之適應介面電路設計與模擬 23 3.1 半數位式感測器適應介面電路 24 3.1.1 比較器 27 3.1.2 八位元上數同步計數器 28 3.1.3 八位元電流型輸出數位類比轉換器 29 3.1.4 半數位式感測器適應介面電路 31 3.1.5 多通道半數位式感測器適應介面電路 36 3.2 數位式感測器適應介面電路 43 3.2.1 八位元上下數同步計數器 45 3.2.2 八位元數位類比轉換器 47 3.2.3 遲滯比較器 48 3.2.4 數位式感測器適應介面電路 50 3.3 類比式感測器適應介面電路 55 3.3.1 單層多晶矽懸浮閘元件之原理、結構與等效模型 55 3.3.2 類比式感測器適應介面電路之架構與原理 61 3.3.3 遲滯比較器 63 3.3.3 位準位移器(level shifter) 65 3.3.4 類比式感測器適應介面電路之模擬 66 第4章 感測器適應介面電路量測結果與氣體實驗 72 4.1 半數位式感測器適應介面電路 72 4.1.1 量測裝置與環境 72 4.1.2 八位元同步計數器與八位元數位類比轉換器 73 4.1.3 比較器 74 4.1.4 半數位式感測器適應介面電路 75 4.1.5 多通道半數位式感測器適應介面電路 80 4.1.6 結論 84 4.2 數位式感測器適應介面電路 86 4.2.1 量測裝置與環境 86 4.2.2 八位元上下數同步計數器 87 4.2.3 八位元數位類比轉換器 88 4.2.4 遲滯比較器 89 4.2.5 數位式感測器適應介面電路 89 4.2.6 結論 96 4.3 類比式感測器適應介面電路 97 4.3.1量測裝置與環境 97 4.3.2遲滯比較器 98 4.3.2 位準位移器(level shifter) 98 4.3.3 類比式感測器適應介面電路 99 4.3.4 結論 107 4.4 三種感測器適應介面電路之比較 107 4.5 氣體感測環境、實驗與分類結果 110 4.5.1 氣體感測器、氣體感測環境與實驗流程 110 4.5.2 氣體濃度之計算 112 4.5.3 半數位式感測器適應介面電路之氣體實驗與分類結果 113 4.5.4 數位式感測器適應介面電路之氣體實驗與分類結果 117 4.5.5 結論 119 第5章 結論與未來展望 120 參考文獻 123

    [1] G. Korotcenkov, Chemical Sensors: Comprehensive Sensor Technologies, Vol 6, Chemical Sensors Applications., New York: Momentum Press, 2011.
    [2] L. Buck, and R. Axel, “A novel multigene family may encode odorant receptors: A molecular basis for odor recognition,” Cell, vol. 65, pp. 175-187, 1991
    [3] B. Tudu, A. Metla, B. Das, N. Bhattacharyya, A. Jana, D. Ghosh, and D. Bandyopadhyay, “Towards versatile electronic nose pattern classifier for black tea quality evaluation: An incremental fuzzy approach,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 9, pp. 3069-3078, 2009.
    [4] I. Concina, M. Falasconi, and V. Sberveglieri, “Electronic Noses as Flexible Tools to Assess Food Quality and Safety: Should We Trust Them?” IEEE Sensors Journal, vol. 12, pp. 3232-3237, 2012.
    [5] C. Arnold, M. Harms, and J. Goschnick, “Air quality monitoring and fire detection with the Karlsruhe electronic micronose KAMINA,” IEEE Sensors Journal, vol. 2, pp. 179-188, 2002.
    [6] Y. D. Jeng, “A gas sensing system for indoor air quality control and polluted environmental monitoring,” IEEE Conference on Nanotechnology, pp. 806-811, 2009.
    [7] M. A. Ryan, K. S. Manatt, S. Gluck, A. V. Shevade, A. K. Kisor, H. Zhou, et al., “The JPL electronic nose: Monitoring air in the U.S. Lab on the International Space Station,” IEEE Sensors, pp. 1242-1247, 2010.
    [8] K. I. Arshak, C. Cunniffe, E. G. Moore, and L. M. Cavanagh, “Custom electronic nose with potential homeland security applications,” IEEE Sensors Applications Symposium, pp. 30-35, 2006.
    [9] G. Dongmin, D. Zhang, L. Naimin, D. Zhang, and Y. Jianhua, “A Novel Breath Analysis System Based on Electronic Olfaction,” IEEE Transactions on Biomedical Engineering, vol. 57, pp. 2753-2763, 2010.
    [10] A. D’Amico, C. Di Natale, R. Paolesse, A. Macagnano, E. Martinelli, G. Pennazza, M. Santonico, M. Bernabei, C. Roscioni, G. Galluccio, R. Bono, E. Finazzi Agrò, and S. Rullo, “Olfactory systems for medical applications,” Sensors and Actuators B: Chemical, vol. 130, pp. 458-465, 2008.
    [11] A. H. Abdullah, A. H. Adom, A. Y. M. Shakaff, M. N. Ahmad, A. Zakaria, F. S. A. Saad, et al., “Hand-Held Electronic Nose Sensor Selection System for Basal Stamp Rot (BSR) Disease Detection,” IEEE Intelligent Systems, Modelling and Simulation (ISMS), pp. 737-742, 2012.
    [12] J. B. Chang and V. Subramanian, “Electronic Noses Sniff Success,” IEEE Spectrum, vol. 45, pp. 50-56, 2008.
    [13] K. T. Tang, S. W. Chiu, M. F. Chang, C. C. Hsieh, and J. M. Shyu, “A wearable Electronic Nose SoC for healthier living,” IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 293-296, 2011.
    [14] R. W. Moncrieff, “An instrument for measuring and classifying odours”, Journal of Applied Physiology, vol. 16, pp. 742-749, 1961.
    [15] K. Persaud and G. H. Dodd, “Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose,” Nature, vol. 299, pp. 352-355, 1982.
    [16] J.W. Gardner, P. N. Bartlett, G. H. Dodd, and H. V. Shurmer, “Pattern recognition in the Warwick Electronic Nose,” 8th Int. Congress of the European Chemoreception Research Organisation, 1987.
    [17] J.W. Gardner and P. N. Bartlett, “Sensors and Sensory Systems for an Electronic Nose,” Germany: Springer, 1992.
    [18] J.W. Gardner, and P.N. Bartlett, “A Brief History of Electronic Noses,” Sensors and Actuators B: Chemical, vol 18, pp. 211-220, 1994
    [19] S. Thuret, L. D. F. Moon and F. H. Gage, “Therapeutic interventions after spinal cord injury,” Nature Reviews Neuroscience, pp. 628-643, 2006.
    [20] N. Barsan, D. Koziej, U. Weimar, “Metal Oxide-Based Gas Sensor Research: How to?” Sensors and Actuators B: Chemical, vol. 121, pp. 18-35, 2007.
    [21] G. Bin, A. Bermak, P. C. H. Chan, and Y. G. Zhen, “Characterization of Integrated Tin Oxide Gas Sensors with Metal Additives and Ion Implantations,” IEEE Sensors Journal, vol. 8, pp. 1397-1398, 2008.
    [22] G. Bin, A. Bermak, P. C. H. Chan, and Y. Gui-Zhen, “An Integrated Surface Micromachined Convex Microhotplate Structure for Tin Oxide Gas Sensor Array,” IEEE Sensors Journal, vol. 7, pp. 1720-1726, 2007.
    [23] R. Kumar, R. R. Das, V. N. Mishra, and R. Dwivedi, “A Neuro-Fuzzy Classifier-Cum-Quantifier for Analysis of Alcohols and Alcoholic Beverages Using Responses of Thick-Film Tin Oxide Gas Sensor Array,” IEEE Sensors Journal, vol. 10, pp. 1461-1468, 2010.
    [24] I. Kiselev, M. Sommer, J. K. Mann, and V. V. Sysoev, “Employment of Electric Potential to Build a Gas-Selective Response of Metal Oxide Gas Sensor Array,” IEEE Sensors Journal, vol. 10, pp. 849-855, 2010.
    [25] M. Aleixandre, J. Lozano, J. Gutiérrez, I. Sayago, M. J. Fernández, and M. C. Horrillo, “Portable e-nose to classify different kinds of wine,” Sensors and Actuators B: Chemical, vol. 131, pp. 71-76, 2008.
    [26] T. C. Pearce, S. S. Schiffman, H. T. Nagle, J. W. Gardner, Handbook of Machine Olfaction: electronic nose technology, Weinheim: Wiley-VCH, 2003.
    [27] F. K. C. Harun, J. E. Taylor, J. A. Covington, and J. W. Gardner, “An electronic nose employing dual-channel odour separation columns with large chemosensor arrays for advanced odour discrimination,” Sensors and Actuators B: Chemical, vol. 141, pp. 134-140, 2009.
    [28] K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford, “A review of gas sensors employed in electronic nose applications,” Sensor Review, vol. 24, pp. 181-198, 2004.
    [29] 吳景怡, “適用於電子鼻晶片中與標準CMOS製程相容之積體化導電聚合物氣體感測器陣列及其適應介面電路,” 國立清華大學碩士學位論文, 民國99年.
    [30] M. J. Moure, P. Rodiz, M. D. Valdéz, L. Rodriguez-Pardo and J. Fariña, “An FPGA-based System for the Measurement of Frequency Noise and Resolution of QCM Sensors,” Latin American Applied Research, vol. 37, n.1, pp. 25-30, 2007.
    [31] M. F. Hribšek, D. V. Tošić, M. R. Radosavljević, “Surface acoustic wave sensors in mechanical engineering,” FME Transactions, vol. 38, pp. 11-18, 2010.
    [32] 李承漢, “可攜式電子鼻SAW感測器陣列介面電路,” 國立清華大學碩士學位論文, 民國99年.
    [33] N. S. Lewis, “Comparisons between Mammalian and Artificial Olfaction Based on Arrays of Carbon Black−Polymer Composite Vapor Detectors,” Account of Chemical Research, vol. 37, pp. 663-672, 2004.
    [34] X. Mu, E. Covington, D. Rairigh, C. Kurdak, E. Zellers, and A. J. Mason, “CMOS Monolithic Nanoparticle-Coated Chemiresistor Array for Micro-Scale Gas Chromatography,” IEEE Sensors Journal, vol. 12, pp. 2444-2452, 2012.
    [35] T. J. Koickal, A. Hamilton, T. Su Lim, J. A. Covington, J. W. Gardner, and T. C. Pearce, “Analog VLSI Circuit Implementation of an Adaptive Neuromorphic Olfaction Chip,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, pp. 60-73, 2007.
    [36] M. Grassi, P. Malcovati, and A. Baschirotto, “A 160 dB Equivalent Dynamic Range Auto-Scaling Interface for Resistive Gas Sensors Arrays,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 518-528, 2007.
    [37] A. Baschirotto, S. Capone, A. D’Amico, C. Di Natale, V. Ferragina, G. Ferri, et al., “A portable integrated wide-range gas sensing system with smart A/D front-end,” Sensors and Actuators B: Chemical, vol. 130, pp. 164-174, 2008.
    [38] Q. Xinbo and T. H. Teo, “A low-power comparator with programmable hysteresis level for blood pressure peak detection,” IEEE TENCON, pp. 1-4, 2009.
    [39] C. Diorio, D. Hsu, and M. Figueroa, “Adaptive CMOS: from biological inspiration to systems-on-a-chip,” Proceedings of the IEEE, vol. 90, pp. 345-357, 2002.
    [40] R. R. Harrison, J. A. Bragg, P. Hasler, B. A. Minch, and S. P. DeWeerth, “A CMOS programmable analog memory-cell array using floating-gate circuits,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, pp. 4-11, 2001.
    [41] J. Brewer and M. Gill, Nonvolatile Memory Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using Flash Memory Devices, Hoboken NJ: Wiley-IEEE Press, 2008.
    [42] S. Tam, P. K. Ko, and C. Hu, “Lucky-electron model of channel hot-electron injection in MOSFET’s,” IEEE Transactions on Electron Devices, vol. 31, no. 9, pp. 1116–1125, 1984.
    [43] S. S. Jye, Y. C. Song, W. Y. Sen, C. C. H. Hsu, S. D. T. Chang, N. Rodjy, et al., “Novel self-convergent programming scheme for multi-level p-channel flash memory,” IEEE International Electron Devices Meeting(IEDM), pp. 287-290, 1997.
    [44] S. S. Chung, S. T. Liaw, C. M. Yih, Z. H. Ho, C. J. Lin, D. S. Kuo, et al., “N-channel versus p-channel flash EEPROM-which one has better reliabilities,” IEEE Reliability Physics Symposium, pp. 67-72, 2001.
    [45] 林鴻志, “深次微米閘極技術之發展與未來驅勢(II),” 國家奈米實驗室奈米通訊, vol. 3, pp. 14-21, 1998.
    [46] 王博平, “懸浮閘電晶體於0.18μm單層多晶矽CMOS製程之開發與其在類比電路上的應用,” 國立清華大學碩士學位論文, 民國99年.
    [47] 吳欣諭, “單層多晶矽懸浮閘電晶體於0.18μm CMOS製程之研發與其在類比電路的應用,” 國立清華大學碩士學位論文, 民國101年.
    [48] L. Junhua, Y. Le, D. Zhixin, Z. Jinshu, and L. Huailin, “A 1.8V to 10V CMOS level shifter for RFID transponders,” IEEE Solid-State and Integrated Circuit Technology (ICSICT), pp. 491-493, 2010.
    [49] R. I. Yamada, Y. Mori, Y. Okuyama, J. Yugami, T. Nishimoto, and H. Kume, “Analysis of detrap current due to oxide traps to improve flash memory retention,” IEEE Reliability Physics Symposium, pp. 200-204, 2000.
    [50] M. Kato, N. Miyamoto, H. Kume, A. Satoh, T. Adachi, M. Ushiyama, et al., “Read-disturb degradation mechanism due to electron trapping in the tunnel oxide for low-voltage flash memories,” IEEE International Electron Devices Meeting(IEDM), pp. 45-48, 1994.
    [51] L. C. Wang, K. T. Tang, S. W. Chiu, S. R. Yang, and C. T. Kuo, “A bio-inspired two-layer multiple-walled carbon nanotube–polymer composite sensor array and a bio-inspired fast-adaptive readout circuit for a portable electronic nose,” Biosensors and Bioelectronics, vol. 26, pp. 4301-4307, 2011.
    [52] K. T. Tang, S. W. Chiu, M. F. Chang, C. C. Hsieh, and J. M. Shyu, “A Low-Power Electronic Nose Signal-Processing Chip for a Portable Artificial Olfaction System,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, pp. 380-390, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE