簡易檢索 / 詳目顯示

研究生: 李柔儀
Christine, Jou-I, Lee
論文名稱: 以濕潤天平量測錫-銅及錫-鉍無鉛銲料之濕潤性
Wetting study of Sn-Cu and Sn-Bi lead-free solders by a wetting balance
指導教授: 陳信文教授
Sinn-Wen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 72
中文關鍵詞: 濕潤天平錫銅銲料錫鉍銲料濕潤性質界面反應介金屬相
外文關鍵詞: wetting balance, Sn-Cu solder, Sn-Bi solder, wetting properties, metallurgical reaction, intermetallic compounds
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以濕潤天平(wetting balance)定量量測基材的濕潤性,探討基材與錫銅和錫鉍無鉛銲料間的濕潤現象,所使用的基材為銅和鎳片。同時以現用之錫鉛銲料作為對照,比較其濕潤情形。
    在濕潤性質的測試方面,將銅片和鎳片以夾具夾住,並沾上適量的助銲劑(有水溶性、type-RMA及type-R三種),再將之掛於濕潤天平的基材懸掛處上做濕潤性的測試。所改變的環境參數有兩個部分:改變浸漬速度及銲料的溫度。經由以濕潤天平測試不同的環境下錫銅銲料對基材的濕潤性質,發現較佳的濕潤情形發生在使用水溶性助銲劑時,浸漬速度為20mm/s、浸漬深度為4mm、錫鉛銲料(Sn-40wt%Pb)溫度為250ºC或錫銅銲料(Sn-1wt%Cu)溫度為270ºC。在這樣的情形下所得到的濕潤時間,依錫鉛銲料對基材銅、錫鉛銲料對基材鎳、錫銅銲料對基材銅及錫銅銲料對基材鎳的順序,分別為0.26秒、0.3秒、0.4秒及0.435秒。單位沾濕周長之最大濕潤力則分別是0.283N/m、0.263N/m、0.223N/m及0.157N/m。再藉由濕潤力所計算出的界面張力依序分別為0.41 N/m、0.438N/m、0.433N/m及0.493N/m。而計算出的接觸角大小則分別是34.4度、47.5度、52.3度及63.9度。

    若是銲料和基材在濕潤的過程中發生界面反應,則所量測到的濕潤性質應該變成是銲料對介金屬相,而非銲料對基材。因此,當銲料與基材濕潤的界面生成不同的介金屬相,其所量測到的濕潤性質可能會因生成相的不同而有一個轉折點。錫-鉍銲料與基材鎳的界面反應,在300℃下會有Ni3Sn4相或NiBi3相生成之可能。經由不同組成和鎳片的液固界面反應,可以粗略得到不同組成之錫鉍合金與鎳反應生成Sn-Ni相和Ni-Bi相的分界點位於Sn-98wt%Bi附近。而用濕潤天平所測得的濕潤時間和最大濕潤力在Sn-97.5wt%Bi與Sn-98wt%Bi之間也有所變化,不過濕潤力的改變較小。錫鉍合金中的Bi含量增加,濕潤時間變長的原因,可能是一方面因為Bi含量愈高時,氧化層生成較容易,造成銲料要恢復因基材插入後造成的曲面為水平面時的阻力,也因為如此測得的數值跳動比較大。但在Sn-97.5wt%Bi會有一個轉折點,應該是與生成Sn-Ni相和Sn-Bi相的不同有極大的關係。因為界面反應的結果顯示在此組成附近的錫鉍合金與鎳的界面生成相有Sn-Ni相和Sn-Bi相的差異,只是這兩相與銲料的界面張力差距並不大。因此,銲料對基材之濕潤行為實際上是銲料對介金屬相之濕潤行為。

    在錫銅銲料方面,錫銅銲料與基材銅在200℃~300℃的溫度下反應會有Cu6Sn5相在界面生成,而與基材銅在此溫度下反應則會有Ni3Sn4相在界面生成。預期將基材於銲料中的浸漬時間加長可能改變介金屬相的厚度,進而使濕潤力有所變化。實驗的結果顯示,在不同浸漬時間下所測得的濕潤時間和最大濕潤力改變並不大,推測可能是因為介金屬相很快就形成了,且在所改變的浸漬時間中,介金屬相厚度的改變並不大,不至於造成濕潤行為的不同。也可能是界面張力的差距不大,或是相對於基材與空氣的界面張力都過小,以致於顯現出沒有改變。


    Abstract
    Intermetallic compounds form at the interface of Sn-Cu and Sn-Bi solders on diverse substrates in a relatively short time. However, whether these compounds affect the wetting properties of Sn-Cu and Sn-Bi alloys on diverse substrates remains unknown. Therefore, this study attempts to determine how the intermetallic compounds affect the wetting properties of Sn-Cu and Sn-Bi solders on diverse substrates by using the wetting balance method. A vertical substrate plate is immersed into a molten solder bath. The force performed on the plate is then measured by utilizing a wetting balance. Next, a wetting balance is used to measure the wetting time, wetting force, contact angle and surface tension. Moreover, the operational environment of the wetting balance is altered to obtain discrepant wetting property data under various conditions. Solder temperature, immersion time and solder composition comprise the varying operational environments. Furthermore, OM is used to observe the intermetallic compound at the interface. Experimental results demonstrate the basic wetting properties of Sn-Cu solder on diverse substrates by a wetting balance, such as wetting time, wetting force, contact angle and surface tension. Results in this study clarify the role of reactive wetting in formed intermetallic compounds at the interface by altering the operational environments of the wetting balance.

    目 錄 摘要 Ⅰ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 一、緒論 1 二、文獻回顧 4 2-1 濕潤現象 4 2-2 測量濕潤性的方法與原理 6 2-3 濕潤天平原理 9 2-4 反應濕潤 15 2-5 介金屬相 19 2-5-1 Sn-Cu/Cu 19 2-5-2 Sn-Cu/Ni 20 2-5-3 Sn-Cu/Bi 21 三、研究方法 25 3-1 實驗材料 25 3-2 實驗設備與儀器 26 3-3 基材的製備 27 3-4 銲料的製備 27 3-5 濕潤性質測試 28 四、結果與討論 31 4-1 錫-銅之基本濕潤性質 31 4-2 改變銲料溫度 36 4-3 不同之助銲劑 39 4-4 表面張力與接觸角 41 4-5 改變浸漬速度 47 4-6 反應濕潤與錫-鉍之界面反應 54 4-7 改變浸漬時間 60 五、結論 67 六、參考文獻 69 附錄:改變錫銅銲料組成

    1.L. Hymes, “Electronic Materials Handbook, Vol.1 Packaging”,
    ASM International, Materials Park, Ohio, (1989).
    2.陳信文,電子與材料,第1期,pp. 74-77, (1999).
    3.P. Zarrow, Circuits Assembly, August, pp.18-20, (1999).
    4.I. Artaki, A. M. Jckson and P. T. Vianco, Journal of
    Electronic Materials, Vol. 23, No. 8, pp.757-764, (1994).
    5.M. Abtew and G. Selvaduray, Materials Science and
    Engineering, Vol. 27, pp.95-141, (2000).
    6.J. Y. Park, J. S. Ha, C. S. Kang, K. S. Shin, M. I. Kim and
    J. P. Jung, Journal of Electronic Materials, Vol.29, No.10,
    pp.1145-1152, (2000).
    7.A. Bondi, Chem. Rev., 52, pp.442-454, (1953).
    8.J. Glazer, International Materials Review, Vol. 40, No. 2,
    pp.75-77, (1995).
    9.R. J. Klein Wassink, “Soldering in Electronics”, 2nd ed.,
    Electrochemical Publications, Isle of Man, British Isles,
    England, pp. 287-291, (1989).
    10.R. J. Klein Wassink, “Soldering in Electronics”, 2nd ed.,
    Electrochemical Publications, Isle of Man, British Isles,
    England, pp. 300-370, (1989).
    11.F. G. Yost, E. J. O’Toole, P. A. Sackinger and T. P.
    Swiler, Sandia Report, January, pp.1-7, (1998).
    12.F. G. Yost, Scripta Materialia, Vol. 38, No. 8, pp.1225-
    1228, (1998).
    13.Lloyd I. Osipow, “Surface Chemistry”, Rorbert E. Krieger
    Publications, Huntington, New York, pp.338-344, (1972).
    14.S. W. Yoon, W. K. Choi and H. M. Lee, Scripta Materialia,
    Vol. 40(3), pp. 297~302, (1999).
    15.F. G. Yost, The Metal Science of Joining, pp.49-pp.59,(1992).
    16.John C. Berg, “Wettability”, Marcel Dekker. Inc., New
    York, pp.77-83, (1993).
    17.W. Adamson, “Physical Chemistry of Surfaces”, 4th ed., A
    Wiley-Interscience Publication, New York, (1982).
    18.陳建忠,“三元物系無鉛焊錫之研究“, 國立清華大學, 材料科學工程
    研究所碩士論文, (1999).
    19.Instruction Manual for SAT-5000, Rhesca Co.,LTD, ver.1.12.
    20.J. Y. Park, C. S. Kang and J. P. Jung, Journal of Electronic
    Materials, Vol. 28(11), pp. 1256-1262, (1999).
    21.P. T. Vianco, F.M. Hosking and J. A. Rejent, in Proc. Conf.
    “Nepcon West”, pp.1730-1738, (1992).
    22.J. O. G. Parent, D. D. L. Chung and I. M. Bernstein, Journal
    of Materials Science, Vol. 23, pp. 2564-2572, (1988).
    23.Y. W., Journal of Electronic Materials, Vol. 22(7), pp. 769-
    777, (1993).
    24.F. Bartels and J. W. Morris, JR., Journal of Electronic
    Materials, Vol. 23(8), pp. 787-790, (1994).
    25.A. Hayashi, C. R. Kao and Y. A. Chang, Scripta Materialia,
    Vol. 37(4), pp. 393-398, (1997).
    26.Z. Marinkovic and V. Simic, Thin Solid Films, Vol. 98, pp.
    95-100, (1982).
    27.J. Haimovich, Welding Research Supplement, Vol. 68(3), pp.
    102s-111s, (1989).
    28.S. Bader, W. Gust and H. Hieber, Acta Metallurgica et
    Materialia, Vol. 43(1), pp. 329-337, (1995).
    29.S. K. Kang and V. Ramachandran, Scripta Materialia, Vol. 14,
    pp. 421-424, (1980).
    30.V. I. Dybkov and O.V. Dunchenko, Journal of Alloys and
    Compounds, Vol. 234, pp. 295, (1996).
    31.M. S. Lee, C. M. Liu and C. R. Kao, Journal of Electronic
    Materials, Vol. 28, pp. 57, (1999).
    32.M. S. Lee, C. Chen and C. R. Kao, Journal of Chemical
    Materials, Vol. 11, pp. 292, (1999).
    33.陳琪,“微電子封裝中鎳與鉍錫銲料界面反應之研究“, 國立中央大
    學, 化學工程研究所碩士論文, (1999).
    34.N. Saunders and A. P. Miodownik, in “ASM Handbook Vol.3
    Alloy Phase Diagrams”, ed. by H. Baker, ASM International,
    Materials Park, Ohio, pp. 2·166, (1992).
    35.D. J. Chakrabarti, D. E. Laughlin, S. W. Chen, Y. A. Chang,
    in “ASM Handbook Vol.3 Alloy Phase Diagrams”, ed. by H.
    Baker, ASM International, Materials Park, Ohio, pp. 2·173, (1992).
    36.P. Nash and A. Nash, in “ASM Handbook Vol.3 Alloy Phase
    Diagrams”, ed. by H. Baker, ASM International, Materials
    Park, Ohio, pp. 2·318, (1992).
    37.I. Karakaya and W. T. Thompson, in “ASM Handbook Vol.3
    Alloy Phase Diagrams”, ed. by H. Baker, ASM International,
    Materials Park, Ohio, pp. 2·335, (1992).
    38.H. Okamoto, in “ASM Handbook Vol.3 Alloy Phase Diagrams”,
    ed. by H. Baker, ASM International, Materials Park, Ohio,
    pp. 2.106, (1992).
    39.Simon Green, Deborah Lea and Christopher Hunt, NPL Report
    CMMT(A)213, pp.1-10, (Aug. 1999).
    40.K-L. Lin and L.-H. Wen, Journal of Materials Science:
    Materials in Electronics, Vol. 9, pp. 5-8, (1998).
    41.W. J. Boettinger, C. A. Handwerker and L. C. Smith, The
    Metal Science of Joining, pp.183-189, (1992).
    42.Z. Mei and J. W. Morris, Jr., Journal of Electronic
    Materials, Vol. 21, No. 6, pp.599-607, (1992).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE