研究生: |
許友惠 Hsu, Yu Hui |
---|---|
論文名稱: |
利用原始語意元衡量概念之語意關聯性 Measuring Concept Semantic Relatedness Based on Semantic Primitives |
指導教授: |
蘇豐文
Soo, Von Wun |
口試委員: |
陳朝欽
Chen, Chaur Chin 王浩全 Wang, Hao Chuan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 語意相關性分析 、原始語意元 、自然語言處理 |
外文關鍵詞: | Semantic Relatedness Analysis, Semantic Primitives, Natural Language Processing |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,越來越多的科技與自然語言處理有著密不可分的關係。而在自然語言處理中,如何判斷不同字詞之間的相關性是很重要的技術之一。
在本篇論文中,應用了一個基於常理建立的知識庫並且找出其中的原始語意;接著提出方法來衡量兩個字詞之間的相關性。首先,我們利用隨機漫步演算法來分析這個知識庫,接著利用HITS 演算法(一種常見的網頁排名演算法)找出知識庫中的原始語意。接著,我們提出了兩個演算法來衡量兩個字詞之間的相關性。
最後我們計算與標準答案的斯皮爾曼等級相關係數(Spearman’s correlation),得到0.54~0.8的結果。
Measuring semantic relatedness is one of the important fundamental technical processes. In this thesis, we propose an approach to find the semantic primitives embedded in a common sense database (ConceptNet) and the algorithms to measure the concept semantic relatedness. We used the Random Walk Algorithm to analyze the common sense database first, and adopt the HITS, a well-known web rank algorithm, to find the semantic primitives in this database. Then we propose two algorithms to measure the semantic relatedness between different pairs of concepts.
We adopted the Spearman’s correlation score as criteria of semantic relatedness and compared the performance of our methods against some benchmark data. Our performance in terms of Spearman’s correlation score ranging from 0.54 to 0.8.
[1] Speer, Robert, and Catherine Havasi. "ConceptNet 5: A large semantic network for relational knowledge." The People’s Web Meets NLP. Springer Berlin Heidelberg, 2013. 161-176.
[2] Semantic Primitives. Wierzbicka, Anna. "Semantic primitives." (1972).
[3] Random Walk Algorithm. https://en.wikipedia.org/wiki/Random_walk
[4] Strube, Michael, and Simone Paolo Ponzetto. "WikiRelate! Computing semantic relatedness using Wikipedia." AAAI. Vol. 6. 2006.
[5] Gabrilovich, Evgeniy, and Shaul Markovitch. "Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis." IJCAI. Vol. 7. 2007.
[6] Hassan, Samer, and Rada Mihalcea. "Semantic Relatedness Using Salient Semantic Analysis." AAAI. 2011.
[7] Halawi, Guy, et al. "Large-scale learning of word relatedness with constraints."Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012.
[8] Radinsky, Kira, et al. "A word at a time: computing word relatedness using temporal semantic analysis." Proceedings of the 20th international conference on World wide web. ACM, 2011.
[9] Yih, Wen-tau, and Vahed Qazvinian. "Measuring word relatedness using heterogeneous vector space models." Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 2012.
[10] HITS Algorithm. Kleinberg, Jon M. "Authoritative sources in a hyperlinked environment." Journal of the ACM (JACM) 46.5 (1999): 604-632.
[11] Finkelstein, Lev, et al. "Placing search in context: The concept revisited."Proceedings of the 10th international conference on World Wide Web. ACM, 2001.
[12] Miller, George A., and Walter G. Charles. "Contextual correlates of semantic similarity." Language and cognitive processes 6.1 (1991): 1-28.
[13] Rubenstein, Herbert, and John B. Goodenough. "Contextual correlates of synonymy." Communications of the ACM 8.10 (1965): 627-633.
[14] Spearman’s rank correlation coefficient. https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
[15] Zhang, Ziqi, et al. "A Random Graph Walk based Approach to Computing Semantic Relatedness Using Knowledge from Wikipedia." LREC. 2010.
APA