簡易檢索 / 詳目顯示

研究生: 陳聖羱
Chen, Sheng-Yuan
論文名稱: 三重陽離子鉛鹵化物鈣鈦礦藉由光及濕潤氧氣降解機制的研究
Degradation of Triple Cation Lead Halide Perovskite Induced by Light and Ambient Gases
指導教授: 楊耀文
Yang, Yaw-Wen
口試委員: 刁維光
Diau, Wei-Guang
陳益佳
Chen, I-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 131
中文關鍵詞: 鈣鈦礦降解機制三重陽離子
外文關鍵詞: perovskite, degradation, triple cation, cesium
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今鈣鈦礦太陽能電池的轉換效率提升地非常迅速,其轉換效率已經可以到達22.1%,不幸地是鈣鈦礦材料在大氣中相當不穩定。本研究製作三重陽離子混和鹵素的鈣鈦礦,利用了較為安定的銫離子取代甲脒以及甲基胺離子的位置,然而最優化的銫離子添加比例是10%,即Cs0.1(FA0.83MA0.17)0.9Pb(I0.83Br0.17)3,此元件的表現是最好的,其效率可達15.3%,並以此三重陽離子鈣鈦礦進行降解機制研究。我們將鈣鈦礦置入於不同環境中6小時,環境分別有:乾燥氧氣、濕潤氮氣、濕潤氧氣,並同時以AM15的光照射鈣鈦礦。將處理過後的樣品利用XPS、XRD、UV-vis和SEM來推演鈣鈦礦降解機制。研究結果顯示,碳陽離子甲基胺特別易與水反應而形成氣態胺逃離鈣鈦礦,而甲脒則會進行一連串的水解反應。對於三個陽離子來說,穩定度是銫離子最為安定,再來是甲脒,最後是甲基胺,而中心金屬鉛會被氧氣氧化成氧化鉛,然而在有照光的環境下,鈣鈦礦有明顯的被破壞,其降解速率會增加許多,在許多文獻中也指出了照光後的鈣鈦礦會與氧氣反應成超氧化物(superoxide),而反應性強的超氧化物與鈣鈦礦進行不可逆的反應,加速地破壞鈣鈦礦結構,在照光的環境下,也發現了碘離子和溴離子會形成氣態碘化氫和溴化氫逃離鈣鈦礦。鈣鈦礦在有水氣和氧氣以及照光的環境下,水氣以及superoxide的破壞是同時進行的。


    The power conversion efficiency of hybrid perovskite (PSK) solar cells already exceeds 22%. Unfortunatley, perovskite materials are unstable in ambient operating condition. In this study, we first reported the fabrication of triple-cation, mixed halide PSK materials that contain methylammonium (MA), formamidinium (FA), and cesium with the expected improvement of stability. The stoichiometry of the best film was optimized to be Cs0.1(FA0.83MA0.17)0.9Pb(I0.83Br0.17)3 based on the solar cell performance that reached 15.3%. The comparative stability test was performed with the PSK films irradiated with AM1.5 light while exposed to three types of gaseous ambient for 6 h: dry O2, moist N2, and moist O2, respectively. The as-treated PSK films were then analyzed with XPS, XRD, UV-vis, and SEM in order to derive at the degradation pathway. The degradation products include amines after PSK reaction with O2 and H2O. The relative stabillity of three cations increases from MA to FA and then Cs. The formation of PbO can be identified. Furthermore, the rate of perovskite degradation is accelerated by the superoxide formed from oxygen molecules with electrons generated from light absorption of perovskite. The gaseous HI and HBr are formed after a series of successive reactions. The PSK degradation becomes most severe under the condition where water and oxygen are simultaneously present.

    目錄 摘要……………………………………………………………………………….i Abstract...........................ii 目錄………………………………………………………………………...…iii 圖目錄………………………………………………………………………….vii 表目錄………………………………………………………………………….xii 第1章 緒論 1 1-1 前言-能源 1 1-2 太陽能電池基本原理與架構 2 1-3 各類型太陽能電池簡介與比較 8 1-4 鈣鈦礦太陽能電池介紹 13 1-4-1 鈣鈦礦太陽能電池的發展 13 1-4-2 鈣鈦礦太陽能電池架構 15 1-4-3 鈣鈦礦介紹 19 1-4-3-1 A位置-陽離子對於鈣鈦礦之影響 22 1-4-3-2 B位置-金屬離子對於鈣鈦礦之影響 30 1-4-3-3 X位置-鹵素離子對於鈣鈦礦之影響 31 1-4-3-4 鈣鈦礦穩定度 34 1-4-4 鈣鈦礦薄膜製程 39 1-5 研究動機 46 第2章 實驗技術及原理簡介 47 2-1 同步輻射光源(synchrotron radiation source)68 47 2-2 X光光電子能譜 (Photoemission spectroscopy, XPS) 50 2-3 紫外光光電子能譜(Ultraviolet Photoemission Spectroscopy, UPS) 57 2-4 X光繞射(X-ray Diffraction, XRD) 59 2-5 紫外-可見光光譜(Ultraviolet – visible spectroscopy, UV-Vis) 63 2-6 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)與能量分散光譜儀(Energy Dispersive Spectroscopy;EDS) 65 第3章 實驗藥品、儀器及實驗步驟 70 3-1 實驗藥品、溶劑與氣體 70 3-2 實驗步驟與流程 73 3-2-1 基材前處理 73 3-2-2 鈣鈦礦Csx(FA0.83MA0.17)1-xPb(I0.83Br0.17)3)溶液配製 74 3-2-3 鈣鈦礦薄膜製成與鈣鈦礦太陽能電池製作 75 3-2-4 真空蒸鍍系統 78 3-2-5 超高真空(Ultra-high vacuum, UHV)表面分析系統 80 第4章 實驗結果與討論 84 4-1 Cs離子濃度對於鈣鈦礦薄膜與元件的影響 84 4-1-1 XPS電子能譜 84 4-1-2 XRD 87 4-1-3 SEM 89 4-1-4 UV吸收光譜 92 4-1-5 UPS電子能譜 93 4-1-6 Csx(FA0.83MA0.17)1-xPb(I0.83Br0.17)3鈣鈦礦元件探討 95 4-1-7 小結語 98 4-2 鈣鈦礦降解機制 98 4-2-1 樣品的製備 98 4-2-2 XPS結果討論與分析 100 4-2-3 綜合討論 117 4-2-3-1 不照光環境的反應機制 118 4-2-3-2 照光環境的反應機制 119 4-2-4 XRD和UV-visible結果與討論 121 第5章 結論 125 第6章 參考文獻 127

    (1) https://zh.wikipedia.org.
    (2) 吳鎮國,林鴻,盧以昕,許仲成,陳欣卉,吳育任 臺大電機系科普系列 2014.
    (3) http://www.ctld.nfu.edu.tw/server/BT/content1/files/C06/c4.pdf.
    (4) http://opvap.com/basictest.php.
    (5) 劉智生; 洪儒生 科學發展 2009, 439.
    (6) https://en.wikipedia.org.
    (7) http://www.nrel.gov/.
    (8) Moller, C. K. Nature 1958, 182, 1436.
    (9) Kagan, C. R.; Mitzi, D. B. SCIENCE 1999, 286, 945.
    (10) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050—6051.
    (11) Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. Nanoscale 2011, 3, 4088.
    (12) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G. Sci Rep 2012, 2, 591.
    (13) Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Gratzel, M. J Am Chem Soc 2012, 134, 17396.
    (14) Michael M. Lee; Joël Teuscher; Tsutomu Miyasaka; Takurou N. Murakami; Snaith, H. J. SCIENCE 2012, 338, 643.
    (15) Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Advanced Energy Materials 2016.
    (16) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat Mater 2014, 13, 897.
    (17) Yang, W. S.; Jun Hong Noh; Nam Joong Jeon, Y. C. K.; Seungchan Ryu; Jangwon Seo; Seok, S. I. SCIENCE 2015, 348, 1234.
    (18) Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Nature 2013, 499, 316.
    (19) Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542.
    (20) Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Energy Environ. Sci. 2015, 8, 1602.
    (21) Junghwan, K.; Geunjin, K.; Tae Kyun, K.; Sooncheol, K.; Hyungcheol, B.; Jinho, L.; Seoung, H. L.; Hongkyu, K.; Kwanghee, L. J. Mater. Chem. A 2014, 2, 17291.
    (22) Q. Xue ; C. Sun ; Z. Hu ; F. Huang ; H.-L. Yip ; Cao, Y. Acta Chim. Sin. 2015, 73, 179.
    (23) Rhee, J. H.; Chung, C.-C.; Diau, E. W.-G. NPG Asia Materials 2013, 5, e68.
    (24) Park, Y. H. C. a. C. H. Journal of the Korean Physical Society 2004, 44, 889∼893.
    (25) Umebayashi, T.; Asai, K.; Kondo, T.; Nakao, A. Physical Review B 2003, 67.
    (26) Goldschmidt; Dtsch., B. Chem 1927, 60, 1263.
    (27) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nature Photonics 2014, 8, 506.
    (28) Goldschmidt; Die, V. M. Naturwissenschaften 1926, 14, 477.
    (29) Park, N.-G. Materials Today 2015, 18, 65.
    (30) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg Chem 2013, 52, 9019.
    (31) Poglitsch, A.; Weber, D. The Journal of Chemical Physics 1987, 87, 6373.
    (32) Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy & Environmental Science 2014, 7, 982.
    (33) Miller, O. D.; Yablonovitch, E.; Kurtz, S. R. IEEE Journal of Photovoltaics 2012, 2, 303
    (34) Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Gratzel, M. Angew Chem Int Ed Engl 2014, 53, 3151.
    (35) Chen, C.-C.; Chang, S. H.; Chen, L.-C.; Kao, F.-S.; Cheng, H.-M.; Yeh, S.-C.; Chen, C.-T.; Wu, W.-T.; Tseng, Z.-L.; Chuang, C. L.; Wu, C.-G. Solar Energy 2016, 134, 445.
    (36) Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Nature 2015, 517, 476.
    (37) Choi, H.; Jeong, J.; Kim, H.-B.; Kim, S.; Walker, B.; Kim, G.-H.; Kim, J. Y. Nano Energy 2014, 7, 80.
    (38) Niemann, R. G.; Gouda, L.; Hu, J.; Tirosh, S.; Gottesman, R.; Cameron, P. J.; Zaban, A. J. Mater. Chem. A 2016, 4, 17819.
    (39) Lee, J.-W.; Kim, D.-H.; Kim, H.-S.; Seo, S.-W.; Cho, S. M.; Park, N.-G. Advanced Energy Materials 2015, 5, 1501310.
    (40) Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K. Chemistry of Materials 2016, 28, 284.
    (41) Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Gratzel, M. Energy Environ Sci 2016, 9, 1989.
    (42) Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Nature Photonics 2014, 8, 489.
    (43) Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T.; Hayase, S. J Phys Chem Lett 2014, 5, 1004.
    (44) Li, Y.; Sun, W.; Yan, W.; Ye, S.; Rao, H.; Peng, H.; Zhao, Z.; Bian, Z.; Liu, Z.; Zhou, H.; Huang, C. Advanced Energy Materials 2016, 6, 1601353.
    (45) Im, J. H.; Jang, I. H.; Pellet, N.; Gratzel, M.; Park, N. G. Nat Nanotechnol 2014, 9, 927.
    (46) Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
    (47) Bu, L.; Liu, Z.; Zhang, M.; Li, W.; Zhu, A.; Cai, F.; Zhao, Z.; Zhou, Y. ACS Appl Mater Interfaces 2015, 7, 17776.
    (48) Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. The Journal of Physical Chemistry C 2013, 117, 13902.
    (49) Niu, G.; Guo, X.; Wang, L. J. Mater. Chem. A 2015, 3, 8970.
    (50) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett 2013, 13, 1764.
    (51) Samuel D. Stranks, G. E. E., 1 Giulia Grancini,2 Christopher Menelaou,1; Marcelo J. P. Alcocer, T. L., 1 Laura M. Herz,1 Annamaria Petrozza,2 Henry J. Snaith1 SCIENCE 2013, 342, 341.
    (52) Unger, E. L.; Bowring, A. R.; Tassone, C. J.; Pool, V. L.; Gold-Parker, A.; Cheacharoen, R.; Stone, K. H.; Hoke, E. T.; Toney, M. F.; McGehee, M. D. Chemistry of Materials 2014, 26, 7158.
    (53) Jingbi, Y.; Ziruo, H.; Qi, C.; Min, C.; Tze-Bin, S.; Chun-Chao, C.; Shirong, L.; Yongsheng, L.; Huanping, Z.; Yang., Y. ACS Nano 2014, 8, 1674.
    (54) Williams., S. T.; Fan, Z.; Chu-Chen, C.; Chien-Yi, L.; Po-Wei, L.; Jen., A. K.-Y. ACS Nano 2014, 8, 10640.
    (55) Tidhar, Y.; Edri, E.; Weissman, H.; Zohar, D.; Hodes, G.; Cahen, D.; Rybtchinski, B.; Kirmayer, S. J Am Chem Soc 2014, 136, 13249.
    (56) Colella, S.; Mosconi, E.; Pellegrino, G.; Alberti, A.; Guerra, V. L.; Masi, S.; Listorti, A.; Rizzo, A.; Condorelli, G. G.; De Angelis, F.; Gigli, G. J Phys Chem Lett 2014, 5, 3532.
    (57) Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y. J. Mater. Chem. A 2014, 2, 705.
    (58) Ito, S.; Tanaka, S.; Manabe, K.; Nishino, H. The Journal of Physical Chemistry C 2014, 118, 16995.
    (59) Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A. Angew Chem Int Ed Engl 2015, 54, 8208.
    (60) Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A. Nat Commun 2017, 8, 15218.
    (61) Burlakov., V. M.; Eperon., G. E.; Snaith., H. J.; S. J. Chapman; Goriely., A. Appl. Phys. Lett. 2014, 104, 091602.
    (62) Chen, C. W.; Kang, H. W.; Hsiao, S. Y.; Yang, P. F.; Chiang, K. M.; Lin, H. W. Adv Mater 2014, 26, 6647.
    (63) Gardner, K. L.; Tait, J. G.; Merckx, T.; Qiu, W.; Paetzold, U. W.; Kootstra, L.; Jaysankar, M.; Gehlhaar, R.; Cheyns, D.; Heremans, P.; Poortmans, J. Advanced Energy Materials 2016.
    (64) Paek, S.; Cho, N.; Choi, H.; Jeong, H.; Lim, J. S.; Hwang, J.-Y.; Lee, J. K.; Ko, J. The Journal of Physical Chemistry C 2014, 118, 25899.
    (65) Kara, K.; Kara, D. A.; Kırbıyık, C.; Ersoz, M.; Usluer, O.; Briseno, A. L.; Kus, M. RSC Adv. 2016, 6, 26606.
    (66) Liang., K.; Mitzi., D. B.; Prikas., M. T. Chem. Mater. 1998, 10, 403.
    (67) Im, J. H.; Jang, I. H.; Pellet, N.; Gratzel, M.; Park, N. G. Nat Nanotechnol 2014, 9, 927.
    (68) Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. J Am Chem Soc 2014, 136, 622.
    (69) https://www.nsrrc.org.tw/chinese/lightsource.aspx.
    (70) https://www.ifw-dresden.de.
    (71) http://mmrc.caltech.edu/SS_XPS/XPS_PPT/XPS_Slides.pdf.
    (72) http://www.thermo.com.cn/Resources/201411/24113052156.pdf.
    (73) http://xpssimplified.com/elements/nickel.php.
    (74) Tien., T. C.; Chen., J. L.; Shien., M. T.; Hwang., C. J.; Tsai., L. N.; Shuin., Y. J.; Lin., L. J. 工業材料雜誌 96年, 251期, 99.
    (75) Zhong, S.; Zhong, J. Q.; Mao, H. Y.; Zhang, J. L.; Lin, J. D.; Chen, W. Phys Chem Chem Phys 2012, 14, 14127.
    (76) 林麗娟 工業材料雜誌 1994, 86期.
    .
    (77) http://3.rnpc-rekos.ru.
    (78) http://slideplayer.com/slide/4358753/.
    (79) http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf.
    (80) http://www.mdu.edu.tw/~yinyu/contributions/SEM-EDS%20readouts.pdf.
    (81) Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Correa Baena, J.-P.; Decoppet, J.-D.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A. Science Advances 2016, 2.
    (82) https://srdata.nist.gov/xps/Default.aspx.
    (83) Rondon, S.; Sherwood, P. M. A. Surface Science Spectra 1998, 5, 97.
    (84) http://xpssimplified.com/index.php.
    (85) Vincent., S.; Mioskowski., C.; Lebeau., L. J. Org. Chem. 1999, 991.
    (86) JANSEN, R. J. J.; BEKKUM, H. V. Carbon 1995, 33, 1021.
    (87) Li, B.; Li, Y.; Zheng, C.; Gao, D.; Huang, W. RSC Adv. 2016, 6, 38079.
    (88) Zhang, Y.; Grancini, G.; Feng, Y.; Asiri, A. M.; Nazeeruddin, M. K. ACS Energy Letters 2017, 2, 802.

    QR CODE