簡易檢索 / 詳目顯示

研究生: 陳瑋真
Chen, Wei-Chen
論文名稱: 以線性預估法回推聲源進行帶脂肪注射手術之成效評估
Acoustic inverse scattering by linear prediction methods of patients treated by lipoinjection thyroplasty: effectiveness of the operation
指導教授: 劉奕汶
Liu, Yi-Wen
口試委員: 吳炤民
鄭桂忠
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 51
中文關鍵詞: 線性預估分析聲帶脂肪注射
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在日常生活中,我們每天都會透過聲音來與人溝通,然而,隨著年紀漸長或其他疾病引起的聲帶異常疾病,往往使人無法正常發聲而前往耳鼻喉科門診求診。在門診中,多數聲帶異常疾病皆會造成聲帶閉合不全的問題,而解決這類問題最常見的治療方式就是聲帶脂肪注射手術(lipoinjection thyroplasty)。 雖然大部分的患者經手術治療後都能恢復正常的嗓音,但對部分患者而言,因為脂肪會被吸收而需要作重複注射(re-injection)或聲帶內移手術(Medialization surgery)。一般在醫院裡除了使用內視鏡等醫療儀器作檢測外,也會用多向度嗓音分析儀(MDVP)對患者之錄音檔作分析,以此判斷手術成效。然而,比起用錄音檔來分析,若能直接對發聲端-聲帶產生的波形作分析,或許可以更精準地評估手術成效。
    在本論文中,我們利用線性預估方法(Linear Prediction)求出模擬聲帶端波形的預估誤差波形(Prediction Error),在設定的振幅範圍內,計算預估波形每音框平均通過的波峰數作為新的聲音指標,以此評估手術成效。我們收集17位進行聲帶脂肪注射手術的患者資料,其中9位為手術成功組,其餘8位為手術失敗組。我們將所有患者之手術前、手術後一個月以及手術後三個月錄音檔作新聲音指標分析,發現手術失敗組與成功組的指標結果呈現不同的趨勢,並以ROC曲線下面積(AUC)作其分辨力的評估,確實可區別手術失敗組與成功組至一定程度(AUC>0.7)。
    在未來,期盼能收集更多患者資料進行分析,並將此指標實際應用於醫療上,及早為患者安排最適當的治療規劃,並節省其診療時間及不必要的花費。


    摘要 I Abstract II 致謝 IV 目次 V 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 2 1.3 章節大綱 2 第二章 人體發音構造與聲帶疾病檢測及治療方式 3 2.1 人體發音的構造 3 2.1.1 聲帶的基本構造 5 2.1.2 聲帶相關疾病及治療方式 6 2.1.3 自體脂肪注射手術介紹 7 2.2 多向度嗓音分析儀及其在醫學上的應用 8 2.2.1 多向度嗓音分析儀 8 2.2.2 醫學上常用的音聲指標[20] 11 第三章 系統架構原理 13 3.1 聲帶端激發訊號之聲學模型[3] 13 3.2 線性預估分析 16 3.2.1 發音模型[3] 16 3.2.2 線性預估模型[3][26] 20 3.2.3 線性預估係數求法[3] 22 第四章 實驗方法與結果討論 24 4.1 實驗流程及方法 24 4.2 多向度嗓音分析儀分析結果 32 4.3 新指標參數之分析結果 36 4.4 ROC曲線下之面積分析 38 4.5 問題與討論 44 第五章 結論與未來展望 46 5.1 結論 46 5.2 未來展望 47 參考文獻 48

    [1] E. Yumoto, W. J. Gould, and T. Baer, “Harmonics-to-noise ratio as an index of the degree of hoarseness,” The Journal of the Acoustical Society of America, vol. 71, no. 6. pp. 1544–1549, Jun. 1982.
    [2] D. G. Silva, L. C. Oliveira, and M. Andrea, “Jitter estimation algorithms for detection of pathological voices,” EURASIP Journal on Advances in Signal Processing, vol. 2009, no. 9, p.1-9, 2009.
    [3] 王小川, 語音訊號處理(修訂二版), 全華圖書, 台北縣土城市, 2009.
    [4] L. Rabiner, B. H. Juang., Foundamentals of speech recognition. Prentice-Hall, Inc., 1993, pp. 30–33.
    [5] J. H. Brandenburg, W. Kirkham, and D. Koschkee, “Vocal cord augmentation with autogenous fat,” The Laryngoscope, vol. 102, no. 5, pp. 495–500, 1992.
    [6] D. O. Mikaelian, L. D. Lowry, and R. T. Sataloff, “Lipoinjection for unilateral vocal cord paralysis,” The Laryngoscope, vol. 101, no. 5, pp. 465–468, 1991.
    [7] H. Umeno et al.,“Analysis of voice function following autologous fat injection for vocal fold paralysis,” Otolaryngology--head and neck surgery, vol. 132, no. 1, pp. 103–107, Jan. 2005.
    [8] T. M. McCulloch et al., “Long-term follow-up of fat injection laryngoplasty for unilateral vocal cord paralysis,” The Laryngoscope, vol. 112, no. 7, pp. 1235–1238, 2002.
    [9] O. Laccourreye et al., “Intracordal injection of autologous fat in patients with unilateral laryngeal nerve paralysis: long-term results from the patient’s perspective,” The Laryngoscope, vol. 113, no. 3, pp. 541–545, 2003.
    [10] M. W. Hsiung et al., “Fat augmentation for glottic insufficiency,” The Laryngoscope, vol. 110, no. 6, pp. 1026–33, Jun. 2000.
    [11] B. S. Kim et al., “Usefulness of laryngeal phonation CT in the diagnosis of vocal cord paralysis,” American journal of roentgenology, vol. 190, no. 5, pp. 1376–1379, May 2008.
    [12] R. Schwarz et al., “Classification of unilateral vocal fold paralysis by endoscopic digital high-speed recordings and inversion of a biomechanical model,” IEEE transactions on bio-medical engineering, vol. 53, no. 6, pp. 1099–1108, Jun. 2006.
    [13] P. C. Belafsky et al., “Muscle tension dysphonia as a sign of underlying glottal insufficiency,” Otolaryngology--head and neck surgery, vol. 127, no. 5, pp. 448–451, Nov. 2002.
    [14] D. D. Deliyski, “Acoustic model and evaluation of pathological voice production,” in Third European Conference on Speech Communication and Technology, 1993, pp. 1969–1972.
    [15] R. D. Kent et al., “Voice dysfunction in dysarthria: application of the Multi-Dimensional Voice ProgramTM,” Journal of Communication Disorders, vol. 36, no. 4, pp. 281–306, Jul. 2003.
    [16] G. Cantarella et al., “Outcomes of structural fat grafting for paralytic and non-paralytic dysphonia,” Acta otorhinolaryngologica Italica, vol. 31, no. 3, pp. 154–160, Jun. 2011.
    [17] J. B. Jensen, N. Rasmussen, “Phonosurgery of vocal fold polyps, cysts and nodules is beneficial,” Danish medical journal, vol. 60, no. 2, p.1-5, Feb. 2013.
    [18] S. Zelcer et al., “Multidimensional voice program analysis (MDVP) and the diagnosis of pediatric vocal cord dysfunction,” Annals of Allergy, Asthma & Immunology, vol. 88, no. 6, pp. 601–608, 2002.
    [19] KayPentax, “Disordered voice database and program, model 4337” [Online]. Available: http://www.kayelemetrics.com/index.php?option=com_product&Itemid=3&controller=product&task=learn_more&cid[]=52.
    [20] KayPentax, Software instruction manual: Multi-Dimensional Voice Program(MDVP) Model 5105, KayPentax, 2008.
    [21] J. Makhoul, “Linear prediction: a tutorial review,” Proceedings of the IEEE, vol. 63, no. 4, 1975.
    [22] G. U. Yule, “On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers,” Philosophical Transactions of the Royal Society, vol. 226, pp. 267–298, 1927.
    [23] D. Y. Wong, J. D. Markel, “An excitation function for LPC synthesis which retains the human glottal phase characteristics,” IEEE Int. Conf. Acoust., Speech, Signal Processing, 1978, pp. 171–174.
    [24] H. W. Strube, “Determination of the instant of glottal closure from the speech wave,” The Journal of the Acoustical Society of America, vol. 56, no. 5, pp. 1625–9, Nov. 1974.
    [25] A. B. M. S. U. Doulah, Islam S., “Detection of various diseases by using formant track extraction and pitch contour analysis,” in Proceedings of 14th International Conference on Computer and Infonnation Technology, 2011.
    [26] L. R. Rabiner, R. W. Schafer, “Introduction to digital speech processing,” Foundations and Trends in Signal Processing, vol. 1, no. 1–2, pp. 1–194, 2007.
    [27] T. Drugman et al., “Detection of glottal closure instants from speech signals : a quantitative review,” vol. 20, no. 3, pp. 994–1006, 2012.
    [28] R. Jang, “Audio signal processing and recognition” [Online]. Available: http://neural.cs.nthu.edu.tw/jang/books/audiosignalprocessing/index.asp.
    [29] U. G. Goldstein, “An articulatory model for the vocal tracts of growing children,” D. Sc. thesis , Massachusetts Institute of Technology, 1980.
    [30] E. Billauer., “peakdet: Peak detection using MATLAB” [Online]. Available: http://www.billauer.co.il/peakdet.html.
    [31] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27, no. 8, pp. 861–874, Jun. 2006.
    [32] T. B. Newman, M. A. Kohn, Evidence-Based Diagnosis, Cambridge University Press, 2009.
    [33] A. E. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern Recognition, vol. 30, no. 7, pp. 1145–1159, 1997.
    [34] J. A. Hanley, B. J. McNeil, “The meaning and use of the area under a receiver operating characteristic (ROC) curve,” Radiology, vol. 143, no. 1, pp. 29–36, 1982.
    [35] T. G. Tape, “The area under an ROC curve” [Online]. Available: http://gim.unmc.edu/dxtests/roc3.htm.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE