簡易檢索 / 詳目顯示

研究生: 林舜南
論文名稱: 整合水平式奈米碳管於SOI晶片上實現微機電元件
Integration of HACNTs on SOI to implement MEMS devices
指導教授: 方維倫
口試委員: 徐文光
林家民
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 70
中文關鍵詞: 水平碳管微機電製程技術SOI晶片
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管擁有許多優異的材料特性,可以應用於不同研究領域上。近年來,水平碳管已為半導體產業備受矚目之内部導線材料,本研究利用提出之製程技術將水平碳管整合於於SOI晶片上,藉由微機電(Micro Electro-Mechanical System, MEMS)製程技術可將奈米級材料製作於微米等級元件上,實現具水平碳管之微機電元件,並完成元件在電性上的量測。本研究整合水平碳管於SOI晶片上,提出以下兩項研究目標。第一,利用半導體製程技術製作出微矽模具,藉以定義水平碳管的結構形狀 ; 第二,驗證本文提出之製程技術可批量化製作具水平碳管感測元件,並進而從量測結果探討本研究所成長之水平碳管的感測物理量特性。


    摘要……………………………………………………………………..Ⅰ Abstract…………………………………………………………………Ⅱ 目錄…………………………………………………….……….………III 圖目錄…………………………………………………….……….……Ⅵ 表目錄…………………………………………………….……….……Ⅸ 第1章 前言 1 1-1 研究動機 1 1-2 奈米碳管及其合成方式介紹 3 1-2.1 奈米碳管結構和性質 4 1-2.2 奈米碳管合成方式 4 1-2.3 奈米碳管成長模式 6 1-3 文獻回顧 6 1-3.1 利用氣流控制奈米碳管的水平排列 7 1-3.2 利用熱處理過的單晶基板成長水平式奈米碳管 8 1-3.3 利用電場控制奈米碳管的排列方向 8 1-3.4 利用毛細力製備水平式奈米碳管 9 1-3.5 成長水平式奈米碳管於矽基蝕刻側壁 10 1-4 研究目標 10 第2章 製造流程與結構 23 2-1 製造流程……………………………………………………23 2-1.1 水平碳管成長於矽基蝕刻側壁 23 2-1.2 整合水平碳管於SOI晶片之製造流程 25 2-2 用矽基微模具形狀定義水平碳管結構 26 2-2.1 設計概念 26 2-2.2 製程結果與討論 27 第3章 元件設計與量測 43 3-1 元件設計 43 3-1.1 具水平碳管之電阻式溫度計 43 3-1.2 具水平碳管之電阻式溼度計 44 3-2 元件製作及量測結果 45 3-2.1 溫度感測特性量測 46 3-2.2 濕度感測特性量測 47 第4章 結論與未來工作 58 4-1 結論 58 4-2 未來工作 59 參考文獻 62

    [1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol 354, pp.56-58, 1991
    [2] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, “Mechanical properties of carbon nanotubes,” Applied Physics A : Materials Science & Processing, vol 69, pp.255-260. 1999
    [3] Q. Li, C. Liu, X. Wang, and S. Fang, “Measuring the thermal conductivity of individual carbon nanotube by Roman shift method,” Nanotechnology, vol.22, pp. 145702 , 2009
    [4] Z. Yao, C. L. Kane, and C. Dekker, “High field electrical transport in single wall carbon nanotubes,” Physical Review Letters, vol. 84, pp. 2941-2944, 2000
    [5] B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability an current carrying capacity of carbon nanotubes,” Applied Physics Letters., vol. 79, pp. 1172-1174, 2001
    [6] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, pp. 49-52, 1998
    [7] T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z. R. Abrams, E. Ben-Jacob, and Y. Hanein “Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays,” Nanotechnology, vol. 18, pp. 035201, 2007
    [8] T. Kawano, H. C. Chiamori, M. Suter, Q. Zhou, B. D. Sosnowchik, and L. Lin, “An electrothermal carbon nanotube gas sensor,” Nano Letters, vol. 7, pp. 3686-3690, 2007
    [9] G. Pirio, P. Legagnuex, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, and W. I. Milne, “Fabrication and electrical characteristics of carbon nanotubes field emission microcathodes with an integration gate electrode,” Nanotechnology, vol. 13, pp. 1-4, 2002
    [10] I. M. Choi, and S. Y. Woo, “Development of low pressure sensor based on carbon nanotubes field emission ,” Metralogia, vol. 43, pp 84-88, 2006
    [11] B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes,” Appl. Phys. Lett., vol. 79, no. 8, pp. 1172–1174, 2001
    [12] M. Radosavljevi´c, J. Lefebvre, and A. T. Johnson, “High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes, ” Phys. Rev. B, vol. 64, 2001
    [13] J. Hone, M. Whitney, C. Piskoti, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Phys. Rev. B, vol. 59 , pp. 514, 1999.
    [14] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Phys. Rev. Lett, vol. 87, 2007
    [15] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, vol. 287, pp. 637–640, 2000
    [16] F. Li, H. M. Cheng, S. Bai, G. Su, and M. S. Dresselhaus, “Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes,” Appl. Phys. Lett., vol. 77, , pp. 3161–3163, 2000
    [17] Z. h. Khan, M. Husain, T. P. Pemg, N. Salah, and S. Habib, “Electrical transport via variable range hopping in an individual multi-walled carbon nanotube,” Journal of Physics: Condensed Matter., vol. 20, , pp. 415207, 2008
    [18] J. Tang ,G. Yang ,Q. Zhang, A. Parhat ,B. Maynor, J. Lui, and O. Zhuo, “Rapid and reproducible fabrication of carbon nanotube AFM probes by dielectrophoresis,” Nano Letters, vol. 5, , pp. 11–14, 2005
    [19] Y. Wei, W. Wei, L. Liu, and S. Fan, “Mounting multi-walled carbon nanotubes on probes by dielectrophoresis,” Diamond & Relative materials, vol. 17, , pp. 1877–1880, 2008
    [20] C. F. Hu, C. L. Cheng, and W. Fang, “The growth of 3D VA CNTs stacks by pre-defining multilayered Al/Fe catalyst films for MEMS fabrication ” IEEE MEMS, pp. 82-85, 2013
    [21] H. S. Iijima and T. Ichihashi, “Single shell carcon nanotubes of 1nm diameter,” Nature, vol. 363, pp.603-605, 1993
    [22] C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus and M. S. Dresselhaus, “Size effects in carbon nanotube, ” Physical Review Letters, vol. 81, pp.1869-1872, 1998
    [23] G. Dresselhaus, M. S. Dresselhaus and R. Saito, “Physics of carbon nanotubes,” Carbon, vol. 33, pp.883-891, 1995.
    [24] S. Dohn, J. Kjelstrup Hansen, D. N. Madsen, K. Molhave, and P. Bolgild, “ Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain ”, Ultamicroscopy, vol. 105, pp. 209 - 214 , 2005
    [25] C. H. Hu, C. H. Liu, L. Z. Chen, and S. S. Fan, “ Semiconductor behavior of low loading multiwall carbon nanotubes composites ” , Appl. Phys. Lett.,vol. 95, pp. 103, 2009
    [26] G. Baumgartner, M. Carrard, L. Zuppiroli, L. Basca, W. A. De Heer, andL. Forro, “Hall effect and magnetoresistance of carbon nanotubes film”, Physical Review B, vol.55, pp. 6704-6707 ,1997
    [27] H. Peng, “Aligned carbon nanotube/polymer composite films wuth robust flexibility high transparency and excellent conductivity” Journal of the American Chemical Society ,vol. 130, pp. 42-43 ,2008
    [28] X. Wang, Y. Liu, G. Yu, J. Zhang, and D. Zhu, “Anisotropic electrical transport properties of aligned carbon nanotube films,” Journal of Physical Chemistry B, vol.105, pp. 9422-9425, 2001
    [29] Y. Saito and S. Uemura, “ Field emission from carbon nanotubes and its application to electron sources”, Carbon, vol. 38, pp. 169 - 182 , 2000
    [30] B. I. Yakobson and R. E. Smalley, “ Fullerene nanotubes : C-1,000,000 and beyond ”, American Scientist, vol. 85, pp. 324, 1997
    [31] B. C. Statishkumar, A. Govindaraj, and C. N. R. Rao, “Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene - hydrocarbon mixtures: role of the metal nanoparticles produces in situ”, Chem. Phys. Lett., vol.307, pp. 158-162 ,1999
    [32] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and L. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition ,” Chem. Phys. Lett., vol.315, pp.25-30 1999
    [33] Z. Jin, H. -B. Chu, J. –Y. Wang, J. –X. Hong, Wenchang Tan, and Yan Li, “Ultralow Feeding Gas Flow Guiding Growth of Large-Scale Horizontally Aligned Single-Walled Carbon Nanotube Arrays,” Nano Letters, vol. 7, pp.2073-2079, 2007
    [34] C. Kocabas, M. Shim, and J. A. Rogers, “Specially selective guided growth of high coverage arrays and random networks of single carbon nanotubes and their integration into electronic devices,” J. Am. Chem. Soc, vol. 128, pp. 4540. , 2006
    [35] H. Ago, N. Ishigami, and N. Yoshihara,“Visualization of Horizontally Aligned Carbon Nanotubes Growth with 12C/13C Isotopes,” J. Phys. Chem., vol.3, 2007
    [36] L. X. Benedict, S. G. Louie, and M. L. Cohen,“Static polarizabilities of single walled carbon nanotubes,” Phys. Rev., vol.11, 1995
    [37] Y. -G. Zhang, A. –L. Chang, J. Cao, Q. Wang, W. Kim, Y. –M. Li, N. Morris, E. Yenilmez, J. Kong, and H. –J. Dai, “Electric-field-directed growth of aligned single-walled carbon nanotubes,” Appl. Phys. Lett.,vol. 79, pp. 3115-3117, 2001
    [38] Z. –Y. Xiao, Y. Chai, Y. Li, M. –H. Sun and C. H. Chan, “Integration of Horizontal Carbon Nanotube Devices on Silicon Substrate Using Liquid Evaporation,” IEEE ECTC, pp. 943-947, 2010
    [39] H. Li, W. Liu, A. M. Cassell, F. Kreupl, and K. Banerjee, “Low-Resistivity Long-Length Horizontal Carbon Nanotube Bundles for Interconnect Applications—Part I: Process Development,” IEEE Transactions on Electron Devices, vol. 60, pp.2862-2869, 2013.
    [40] S. Talapatra, Kar , S. K. Pal, Vajtai R, L. Ci, P. Victor, M. M. Shaijumon, S. Kaur, O. Nalamasu and P. M. Ajayan, “Direct growth of aligned carbon nanotubes on bulk metals,” Nanotechnology, vol. 1 ,pp.112-116, 2006
    [41] J. –Y. Lu, J. –M. Miao, T. Xu, B. Yan, T. Yu, and Z. –X. Shen, “Growth of horizontally aligned dense carbon nanotubes from trench sidewalls,” Nanotechnology, vol. 22 ,pp.1-18, 2011
    [42] J. –k. Lee, Y. –k. Eun, H. –I. Jung, J. –W. Choi, and J. –B. Kim, “A novel accelerometer based on contact resistance of integrated carbon nanotubes,” IEEE MEMS, pp.533-536, 2011
    [43] G. –H Jeong, N. Olofsson, Lena K. L. Falk, Eleanor E. B. Campbell, “Effect of catalyst pattern geometry on the growth of vertically aligned carbon nanotube arrays,” Carbon., vol.47, pp. 696-704, 2009.
    [44] G. Baumgartner, M. Carrard, L. Zuppiroli, W. Bacsa, Walt A. de Heer and L. Forro, “Hall effect and magnetoresistance of carbon nanotube films,” Phys. Rev. B, vol.55, pp. 6704-6707, 1997.
    [45] H. Peng, “Aligned Carbon Nanotube/Polymer Composite Films with Robust Flexibility, High Transparency, and Excellent Conductivity”, J. Am. Chem. Soc, vol.130, pp. 42-43. , 2008
    [46] R. Pati, Y. –M. Zhang, S. K. Nayak, and P. M. Ajayan, “Effect of H2O adsorption on electron transport in a carbon nanotube,” Appl. Phys. Lett.,vol. 81, pp. 2638-2640, 2002
    [47] L. –T. Liu, X. –Y. Ye, K. Wu, R. Han, Z. –Y. Zhou, and T. –H. Cui, “Humidity Sensitivity of Multi-Walled Carbon Nanotube Networks Deposited by Dielectrophoresis,” IEEE Sensors.,vol. 9, 2009
    [48] L. –T. Liu, X. –Y. Ye, , K. Wu, Z. –Y. Zhou, D. –J. Lee, and T. –H. Cui, “Humidity Sensitivity of Carbon Nanotube and Poly (Dimethyldiallylammonium Chloride) Composite Films,” IEEE Sensors Journals, VOL. 9, pp.1308-1314, 2009

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE