簡易檢索 / 詳目顯示

研究生: 任柏衛
Ren, Bo Wei
論文名稱: 基於文章分析的美食推薦系統
A Restaurant Recommendation System Based on Analysis of Articles
指導教授: 李端興
Lee, Duan Shin
口試委員: 張正尚
Chang, Cheng Shang
黃之浩
Huang, Chih Hao
林華君
Lin, Hwa Chun
李端興
Lee, Duan Shin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 30
中文關鍵詞: 文章分析
外文關鍵詞: Analysis of articles
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,智慧型裝置的快速成長,人們會透過智慧型裝置裡的應用程式查
    詢美食餐廳、優惠卷,甚至是記錄一周的生活作息及查看即時路況,由此可知
    應用程式已成為現代人生活不可或缺的一環。
    要如何在這麼多的應用程式當中找到屬於我們的價值,是我們需要思考的
    問題,在此提出的應用程式不但提供美食推薦系統,推薦評價較好的餐廳給使
    用者,更提供個人行為的紀錄,以便使用者回顧一周的點滴,甚至可以近一步
    進行時間管理和規劃。
    在此論文中著重在美食推薦系統,推薦系統是一個熱門且普遍的話題,在
    五花八門的餐廳中,要如何把評價較好的餐廳推薦給使用者,是一個重要的問
    題,這篇論文中,首先,利用Machine Learning 的方法訓練有關美食的辭庫,
    再來分別透過Support Vector Machine(SVM) 和較直覺的方法來分析文章,並
    且藉由分析的結果當作評分依據,最後將詳細描述應用程式的架構,其中包括
    應用程式介面、演算法和模擬結果。


    In recent years, according to the rapid growth of the smart devices, people use
    different applications on the smart devices to find restaurants, coupons, even to
    record their weekly time table and to check the real-time traffic status; from above
    tells that applications on the smart devices have became an indispensable thing
    for people in nowadays.
    The question for us is ”How do we find our value from all these different
    kind of applications?” The application we present not only provides restaurant
    recommendation system, recommending high-reviews restaurants for users, but
    also provides personal behavior records for users to review every weekly details
    and even get to plan and manage the time of use.
    In this paper, we focus more on the restaurant recommendation system, recommendation
    system is a popular and common topic. The biggest task is how to
    recommend high-reviews restaurants in a motley variety of restaurants. We wish
    to decide high evaluation restaurants based on analyze the articles of food. First,
    the jieba Chinese text segmentation was employed to accomplish the text segmentation
    task. Then, we are training lexicon about foods, and analyze an article by
    using support vector machine (SVM) algorithm and intuitive method. Finally,
    we use the results of the analysis as the grade basis. In the following chapters,
    we will describe application framework in detail including the user interface of
    application, algorithm, system architecture, and simulation results.

    Contents 1 Introducion 4 2 Survey application 6 2.1 Voice Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Yelp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 The methods 8 3.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.1 Bag-of-words model . . . . . . . . . . . . . . . . . . . . . . 10 3.1.2 Chinese text segmentation . . . . . . . . . . . . . . . . . . . 10 3.1.3 Weighted schemes . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Classification algorithms . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3.1 Support vector machine . . . . . . . . . . . . . . . . . . . . 11 3.3.2 Intuitive method . . . . . . . . . . . . . . . . . . . . . . . . 14 4 System architecture 16 5 Application interface 18 6 Simulations and results 20 6.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.2 Simulations and results . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.2.1 TF scheme v.s TF-IDF scheme . . . . . . . . . . . . . . . . 21 6.2.2 Weight v.s Without weight . . . . . . . . . . . . . . . . . . 22 6.2.3 SVM v.s Intuitive method . . . . . . . . . . . . . . . . . . . 24 7 Future Work 26 7.1 Latent semantic analysis . . . . . . . . . . . . . . . . . . . . . . . . 26 7.2 Behavior analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 7.3 Real-time route planning . . . . . . . . . . . . . . . . . . . . . . . . 27 8 Conclusion 28 Bibliography 29

    Bibliography
    [1] ”Yelp official website,” Yelp, [Online]. Available:
    http://www.yelp.com.tw/
    [2] ”Download the Voice Go,” Voice Go, [Online]. Available:
    https://play.google.com/store/apps/details?id=com.cyberon.android.voicego
    [3] ”Download the Food Convenient,” Food Convenient, [Online]. Available:
    https://play.google.com/store/apps/details?id=com.orangefish.app.delicacy
    [4] ”PTT website,” PTT, [online]. Available:
    https://www.ptt.cc/bbs/Food/index.html
    [5] Support vector machine. https://en.wikipedia.org/wiki/Support_ vector_
    machine. Accessed June 28, 2015.
    [6] Tong, Simon, and Daphne Koller. ”Support vector machine active learning
    with applications to text classification.” The Journal of Machine Learning
    Research 2 (2002): 45-66.
    [7] Pedregosa, Fabian, et al. ”Scikit-learn: Machine learning in Python.” The
    Journal of Machine Learning Research 12 (2011): 2825-2830.
    [8] Jieba chinese text segmentation. https://github.com/fxsjy/jieba. Accessed
    June 28, 2015.
    [9] ”iPeen website,” iPeen, [online]. Available:
    http://www.ipeen.com.tw/
    [10] JSON. https://en.wikipedia.org/wiki/JSON. Accessed June 28, 2015
    29
    [11] Latent semantic analysis. https://en.wikipedia.org/wiki/Latent_ semantic_
    analysis. Accessed June 28, 2015.
    [12] Baharudin, Baharum, Lam Hong Lee, and Khairullah Khan. ”A review of
    machine learning algorithms for text-documents classification.” Journal of advances
    in information technology 1.1 (2010): 4-20.
    [13] Bag-of-words model. https://en.wikipedia.org/wiki/Bag-of-words_ model.
    Accessed by June 28, 2015.
    [14] SALTON, Gerard; WONG, Anita; YANG, Chung-Shu. A vector space model
    for automatic indexing. Communications of the ACM, 1975, 18.11: 613-620.
    30

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE