研究生: |
黃昱睿 Huang, Yu Rei |
---|---|
論文名稱: |
一個廣義Ornstein-Uhlenbeck的熱核 Heat Kernel for a Generalized Ornstein-Uhlenbeck operator |
指導教授: |
宋瓊珠
Sung, Chiung-Jue 張德健 Chang, Der-Chen |
口試委員: |
王嘉平
Wang, Jiaping 宋瓊珠 Sung, Chiung-Jue 張德健 Chang, Der-Chen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 熱核 |
外文關鍵詞: | Heat Kernel |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇文章,我們使用漢米爾頓與拉格朗日形式來研究這個二
維廣義Ornstein-Uhlenbeck 算子
給定邊界條件後,我們解出這個算子所對應的漢米爾頓系統。然後
利用拉格朗日函數來建構動能函數,利用范夫來克公式得到熱核的
量能項。最後,我們討論此算子的正則與奇異區域。
In this thesis, we use the Hamiltonian and Lagrangian formalism to study the two-dimensional generalized Ornstein-Uhlenbeck operator Given the boundary conditions, we find the solutions of the associated Hamiltonian system of this operator. Then we construct the action function by the Lagrangian function and use the van Vleck's formula to obtain the volume element of the heat kernel. Finally, we discuss the regular and singular regions of this operator.
[1] Der-Chen Chang and Luping Chen, Initial value problem and the heat
kernel for a mixed type operators.
[2] Der-Chen Chang and Sheng-Ya Feng, Geometric Analysis on Ornstein-
Uhlenbeck Operators with Quadratic Potentials. J. Geometric Analysis
DOI: 10.1007/s12220-012-9370-9, 2014.
[3] Der-Chen Chang and Sheng-Ya Feng, Geometric analysis on generalized
Hermite operators. Advances in Applied Mathematics, 47,710-771, 2011.
[4] O.D. Calin, Der-Chen Chang, Kenro Furtani, Chisato Iwasski, Heat
Kernels for Elliptic and Subelliptic Operators. Applied and Numerical
Harmonic Analysis, Birkhauser/Springer Basel AG, Basel, 2011, DoI
10.1007/s12220-012-9370-9
[5] G. Da Prato and A. Lunardi, On the Ornstein-Uhlenbeck operator in
spaces of continuous functions. J. Funct. Anal. no. 1, 94-114. 1995.
[6] Metafune, G, Lp-spectrum of Ornstein-Uhlenbeck operators. Ann. Sc.
Norm. Super. Pisa, Cl. Sci. 30(4), 97-124. 2001.
[7] Metafune, G. , Pruss, J. ,Rhandi, A. , Schnaubelt, R.The domain of
the Ornstein-Uhlenbeck operator on an Lp-space with invariant measure.
Ann. Sc. Morm. Super. Pisa, Cl. Sci. 5, 471-485. 2002.
[8] R. Beals, A note on fundamental solutions. Comm. Partial Dierential
Equations 24, 369-376. 1999.
[9] R. Beals, B. Gaveau, P. C. Greiner, On a geometric formula for the
fundamental solution of subelliptic Laplacians. Math. Nachr. 181, 81-163.
1996.