簡易檢索 / 詳目顯示

研究生: 黃昱睿
Huang, Yu Rei
論文名稱: 一個廣義Ornstein-Uhlenbeck的熱核
Heat Kernel for a Generalized Ornstein-Uhlenbeck operator
指導教授: 宋瓊珠
Sung, Chiung-Jue
張德健
Chang, Der-Chen
口試委員: 王嘉平
Wang, Jiaping
宋瓊珠
Sung, Chiung-Jue
張德健
Chang, Der-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 57
中文關鍵詞: 熱核
外文關鍵詞: Heat Kernel
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇文章,我們使用漢米爾頓與拉格朗日形式來研究這個二
    維廣義Ornstein-Uhlenbeck 算子
    給定邊界條件後,我們解出這個算子所對應的漢米爾頓系統。然後
    利用拉格朗日函數來建構動能函數,利用范夫來克公式得到熱核的
    量能項。最後,我們討論此算子的正則與奇異區域。


    In this thesis, we use the Hamiltonian and Lagrangian formalism to study the two-dimensional generalized Ornstein-Uhlenbeck operator Given the boundary conditions, we find the solutions of the associated Hamiltonian system of this operator. Then we construct the action function by the Lagrangian function and use the van Vleck's formula to obtain the volume element of the heat kernel. Finally, we discuss the regular and singular regions of this operator.

    1 Introduction 3 2 The Hamilton system 4 3 Lagrangian and Action Functions 40 4 The Volume Elements 41 5 The Singularities of the Extended Ornstein-Uhlenbeck Op- erator 42 Appendices 48 Appendix A The Calculations of the action functions 48

    [1] Der-Chen Chang and Luping Chen, Initial value problem and the heat
    kernel for a mixed type operators.
    [2] Der-Chen Chang and Sheng-Ya Feng, Geometric Analysis on Ornstein-
    Uhlenbeck Operators with Quadratic Potentials. J. Geometric Analysis
    DOI: 10.1007/s12220-012-9370-9, 2014.
    [3] Der-Chen Chang and Sheng-Ya Feng, Geometric analysis on generalized
    Hermite operators. Advances in Applied Mathematics, 47,710-771, 2011.
    [4] O.D. Calin, Der-Chen Chang, Kenro Furtani, Chisato Iwasski, Heat
    Kernels for Elliptic and Subelliptic Operators. Applied and Numerical
    Harmonic Analysis, Birkhauser/Springer Basel AG, Basel, 2011, DoI
    10.1007/s12220-012-9370-9
    [5] G. Da Prato and A. Lunardi, On the Ornstein-Uhlenbeck operator in
    spaces of continuous functions. J. Funct. Anal. no. 1, 94-114. 1995.
    [6] Metafune, G, Lp-spectrum of Ornstein-Uhlenbeck operators. Ann. Sc.
    Norm. Super. Pisa, Cl. Sci. 30(4), 97-124. 2001.
    [7] Metafune, G. , Pruss, J. ,Rhandi, A. , Schnaubelt, R.The domain of
    the Ornstein-Uhlenbeck operator on an Lp-space with invariant measure.
    Ann. Sc. Morm. Super. Pisa, Cl. Sci. 5, 471-485. 2002.
    [8] R. Beals, A note on fundamental solutions. Comm. Partial Di erential
    Equations 24, 369-376. 1999.
    [9] R. Beals, B. Gaveau, P. C. Greiner, On a geometric formula for the
    fundamental solution of subelliptic Laplacians. Math. Nachr. 181, 81-163.
    1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE