研究生: |
蕭維均 Hsiao, Wei Jiun |
---|---|
論文名稱: |
針對乳房斷層合成凸最佳化範疇使用以Chambolle-Pock演算法為基礎的快速模式化模型進行影像重建:前期研究 Fast Prototyping of Convex Optimization For Image Reconstruction In Breast Tomosynthesis Using Chambolle-Pock Algorithm:A Pilot Investigation |
指導教授: |
許靖涵
Hsu, Ching Han |
口試委員: |
黃柏嘉
Huang, Po Chia 羅世瑋 Lo, Shi Wei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 乳房斷層合成 、迭代式影像重建 、總變數限制最小化 、主要對偶最佳化 、CP演算法 |
外文關鍵詞: | breast tomosynthesis, iterative image reconsturction, total variation minimization, primal-dual optimization, CP algorithm |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乳房斷層合成由於限制掃描角度,是屬於不完整取樣的系統,在影像重建上會
使用最佳化方法來取得品質較好的重建影像。近期針對稀疏影像(Sparse image) 在
不完整取樣的系統中進行影像重建時,在最佳化目標函數的設計上常利用l1(總變
數) 限制給與影像限制能。然而,l1 限制由於並非平滑函數,演算法的選擇上需能
處理部分不可微分的特性。
Chambolle 與Pock 提出的主要對偶(Primal-Dual) 最佳化演算框架能處理廣泛
的凸最佳化問題,其中包含總變數限制的部分。因此本研究將利用主要對偶最佳化
框架來處理乳房斷層合成所使用的凸最佳化範疇,並利用CP 演算法進行影像重
建。
在結果呈現上,線性模型中使用CP 演算法相較於其他傳統的演算法能取得較
好的重建結果。而在針對總變數限制的最佳化部分,在影像上也能得到邊緣明顯且
分布較連續的影像結果,並且CP 演算有收斂檢查的機制可以避免取得發散的影像
結果。整體而言,CP 演算法使用於乳房斷層合成的影像重建上有較好且較穩的表
現。
關鍵字:乳房斷層合成、迭代式影像重建、總變數限制最小化、主要對偶最佳化、
CP 演算法
Breast tomosynthesis is an underdetermined system due to the limit angular
range. As a result, we tends to use optimization to get better quality of reconstructed
image. Recently, for the reconstruction of the sparse image under an undersampled
system, we tend to use the l1 norm (Total variation) constraint for the image in
designing of the objective function. However, l1 norm constraint is not a smooth
function, we need to choose an algorithm that can handle not everywhere-differentiable
property.
The primal-dual optimization framework proposed by Chambolle and Pock (CP)
can handle generic convex optimization problem, including the usage of total variation
constraint. In this study, we use the primal-dual framework to solve the convex
optimization using in the reconstruction of breast tomosynthesis and reconstruct the
breast image by corresponding CP algorithm.
The results show that, we can have better reconstructed image by using CP algorithm
while comparing with other algorithm that used in the linear model. For the
total variation optimization problem, we can easily use the CP algorithm to get edgepreserved
and smoothly distributed images. CP algorithm can also avoid getting the
divergence reconstructed results by checking the convergence check. In conclusion,
using CP algorithm is robust and can perform well for the image reconstruction of
the breast tomosynthesis.
Keywords: Breast tomosynthesis, iterative image reconstruction, total variation minimization,
primal-dual optimization, CP algorithm
[1] W. H. Origanization, “Breast cancer: prevention and control.” http://
www.who.int/cancer/detection/breastcancer/en/.
[2] I. Sechopoulos, “A review of breast tomosynthesis. Part I. The image acquisition
process,” Medical Physics, vol. 40, no. 1, pp. 014301 (1–12), 2013.
[3] S. Seyyedi and I. Yildirim, “3d digital breast tomosynthesis image reconstruction
using anisotropic total variation minimization,” in 2014 36th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
pp. 6052–6055, Aug 2014.
[4] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theor., vol. 52, pp. 1289–
1306, Apr. 2006.
[5] E. Candès and M. Wakin, “An introduction to compressive sampling,” IEEE
Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.
[6] M. Ertas, I. Yildirim, M. Kamasak, and A. Akan, “An iterative tomosynthesis
reconstruction using total variation combined with non-local means filtering,”
BioMedical Engineering OnLine, vol. 13, pp. 65–65, May 2014.
[7] A. Chambolle and T. Pock, “A First-Order Primal-Dual Algorithm for Convex
Problems with Applications to Imaging,” Journal of Mathematical Imaging and
Vision, vol. 40, no. 1, pp. 120–145, 2011.
[8] J. G. Mainprize, X. Wang, and M. J. Yaffe, “The effect of lag on image quality
for a digital breast tomosynthesis system,” 2009.
78
[9] T. Fauber, Radiographic Imaging and Exposure - Elsevieron VitalSource. Elsevier
Health Sciences, 2013.
[10] A. Smith, “Design considerations in optimizing a breast tomosynthesis system.”
[11] G. M. Stevens, R. L. Birdwell, C. F. Beaulieu, D. M. Ikeda, and N. J. Pelc,
“Circular tomosynthesis: Potential in imaging of breast and upper cervical spine?
preliminary phantom and in vitro study,” Radiology, vol. 228, no. 2, pp. 569–575,
2003. PMID: 12821770.
[12] D. Xia, S. Cho, J. Bian, E. Y. Sidky, C. A. Pelizzari, and X. Pan, “Tomosynthesis
with source positions distributed over a surface,” 2008.
[13] J. Zhang and C. Yu, “A novel solid-angle tomosynthesis (sat) scanning scheme,”
Medical Physics, vol. 37, pp. 4186–4192, June 2010.
[14] B. Ren, C. Ruth, J. Stein, A. Smith, I. Shaw, and Z. Jing, “Design and performance
of the prototype full field breast tomosynthesis system with selenium
based flat panel detector,” 2005.
[15] W. Zhao, R. Deych, and E. Dolazza, “Optimization of operational conditions for
direct digital mammography detectors for digital tomosynthesis,” 2005.
[16] T. Wu, B. Liu, R. Moore, and D. Kopans, “Optimal acquisition techniques for
digital breast tomosynthesis screening,” 2006.
[17] M. P. Kempston, J. G. Mainprize, and M. J. Yaffe, Evaluating the Effect of Dose
on Reconstructed Image Quality in Digital Tomosynthesis, pp. 490–497. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006.
79
[18] P. Timberg, M. Båth, I. Andersson, T. Svahn, M. Ruschin, B. Hemdal, S. Mattsson,
and A. Tingberg, “Impact of dose on observer performance in breast tomosynthesis
using breast specimens,” 2008.
[19] R. M. Nishikawa, I. Reiser, P. Seifi, and C. J. Vyborny, “A new approach to
digital breast tomosynthesis for breast cancer screening,” 2007.
[20] M. Das, H. C. Gifford, J. M. O?Connor, and S. J. Glick, “Evaluation of a
variable dose acquisition technique for microcalcification and mass detection in
digital breast tomosynthesis,” Medical Physics, vol. 36, pp. 1976–1984, Mar. 2009.
[21] Y.-H. Hu and W. Zhao, “The effect of angular dose distribution on the detection
of microcalcifications in digital breast tomosynthesis,” Medical Physics, vol. 38,
pp. 2455–2466, Mar. 2011.
[22] E. A. Rafferty, J. M. Park, L. E. Philpotts, S. P. Poplack, J. H. Sumkin, E. F.
Halpern, and L. T. Niklason, “Assessing radiologist performance using combined
digital mammography and breast tomosynthesis compared with digital mammography
alone: Results of a multicenter, multireader trial,” Radiology, vol. 266,
no. 1, pp. 104–113, 2013. PMID: 23169790.
[23] R. L. Siddon, “Fast calculation of the exact radiological path for a threedimensional
CT array,” Medical Physics, vol. 12, pp. 252–255, Mar. 1985.
[24] K. Lange and R. Carson, “EM Reconstruction Algorithms for Emission and
Transmission Tomography,” Journal of Compuler Assisted Tomography, vol. 8,
no. 2, pp. 306 – 316, 1984.
80
[25] K. Lange, M. Bahn, and R. Little, “A Theoretical Study of Some Maximum Likelihood
Algorithms for Emission and Transmission Tomography,” Medical Imaging,
IEEE Transactions on, vol. 6, pp. 106–114, June 1987.
[26] A. De Pierro, “On the relation between the ISRA and the EM algorithm for
positron emission tomography,” Medical Imaging, IEEE Transactions on, vol. 12,
pp. 328–333, Jun 1993.
[27] R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques
(ART) for three-dimensional electron microscopy and X-ray photography
,” Journal of Theoretical Biology, vol. 29, no. 3, pp. 471 – 481, 1970.
[28] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging.
IEEE Press, 1988.
[29] A. Andersen and A. Kak, “Simultaneous Algebraic Reconstruction Technique
(SART): A superior implementation of the ART algorithm,” Ultrasonic Imaging,
vol. 6, no. 1, pp. 81 – 94, 1984.
[30] J. R. Shewchuk, “An introduction to the conjugate gradient method without the
agonizing pain,” tech. rep., Pittsburgh, PA, USA, 1994.
[31] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim., vol. 1,
pp. 127–239, Jan. 2014.