簡易檢索 / 詳目顯示

研究生: 蕭維均
Hsiao, Wei Jiun
論文名稱: 針對乳房斷層合成凸最佳化範疇使用以Chambolle-Pock演算法為基礎的快速模式化模型進行影像重建:前期研究
Fast Prototyping of Convex Optimization For Image Reconstruction In Breast Tomosynthesis Using Chambolle-Pock Algorithm:A Pilot Investigation
指導教授: 許靖涵
Hsu, Ching Han
口試委員: 黃柏嘉
Huang, Po Chia
羅世瑋
Lo, Shi Wei
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 81
中文關鍵詞: 乳房斷層合成迭代式影像重建總變數限制最小化主要對偶最佳化CP演算法
外文關鍵詞: breast tomosynthesis, iterative image reconsturction, total variation minimization, primal-dual optimization, CP algorithm
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乳房斷層合成由於限制掃描角度,是屬於不完整取樣的系統,在影像重建上會
    使用最佳化方法來取得品質較好的重建影像。近期針對稀疏影像(Sparse image) 在
    不完整取樣的系統中進行影像重建時,在最佳化目標函數的設計上常利用l1(總變
    數) 限制給與影像限制能。然而,l1 限制由於並非平滑函數,演算法的選擇上需能
    處理部分不可微分的特性。
    Chambolle 與Pock 提出的主要對偶(Primal-Dual) 最佳化演算框架能處理廣泛
    的凸最佳化問題,其中包含總變數限制的部分。因此本研究將利用主要對偶最佳化
    框架來處理乳房斷層合成所使用的凸最佳化範疇,並利用CP 演算法進行影像重
    建。
    在結果呈現上,線性模型中使用CP 演算法相較於其他傳統的演算法能取得較
    好的重建結果。而在針對總變數限制的最佳化部分,在影像上也能得到邊緣明顯且
    分布較連續的影像結果,並且CP 演算有收斂檢查的機制可以避免取得發散的影像
    結果。整體而言,CP 演算法使用於乳房斷層合成的影像重建上有較好且較穩的表
    現。
    關鍵字:乳房斷層合成、迭代式影像重建、總變數限制最小化、主要對偶最佳化、
    CP 演算法


    Breast tomosynthesis is an underdetermined system due to the limit angular
    range. As a result, we tends to use optimization to get better quality of reconstructed
    image. Recently, for the reconstruction of the sparse image under an undersampled
    system, we tend to use the l1 norm (Total variation) constraint for the image in
    designing of the objective function. However, l1 norm constraint is not a smooth
    function, we need to choose an algorithm that can handle not everywhere-differentiable
    property.
    The primal-dual optimization framework proposed by Chambolle and Pock (CP)
    can handle generic convex optimization problem, including the usage of total variation
    constraint. In this study, we use the primal-dual framework to solve the convex
    optimization using in the reconstruction of breast tomosynthesis and reconstruct the
    breast image by corresponding CP algorithm.
    The results show that, we can have better reconstructed image by using CP algorithm
    while comparing with other algorithm that used in the linear model. For the
    total variation optimization problem, we can easily use the CP algorithm to get edgepreserved
    and smoothly distributed images. CP algorithm can also avoid getting the
    divergence reconstructed results by checking the convergence check. In conclusion,
    using CP algorithm is robust and can perform well for the image reconstruction of
    the breast tomosynthesis.
    Keywords: Breast tomosynthesis, iterative image reconstruction, total variation minimization,
    primal-dual optimization, CP algorithm

    1 前言1 2 乳房斷層合成(Breast Tomosynthesis) 4 2.1 成像原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 X 光儀. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 斷層合成. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 硬體設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 一般性系統設計. . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 偵測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 硬體參數最佳化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 幾何最佳化. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.2 方法最佳化. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 使用乳房斷層合成儀器的優勢. . . . . . . . . . . . . . . . . . . . . . 12 3 影像重建14 3.1 物理模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 系統矩陣. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 資料模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 普松模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.2 最大相似度函數評估(Maximum Likelihood Estimation, MLE) 16 3.3.2.1 期望值最大演算法(Expectation Maximization algorithm, EM) . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.2.2 梯度演算法(Gradient Ascent Algorithm, GD) . . . 18 3.3.2.3 凸演算法(Convex Algorithm, CV) . . . . . . . . . . 19 i 3.3.3 線性模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.4 最小平方誤差(Least Square Error) . . . . . . . . . . . . . . . 20 3.3.4.1 代數重建法(Algebraic Reconstruction Technique, ART) . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.4.2 同步代數重建法(Simultaneous Algebraic Reconstruction Technique, SART) . . . . . . . . . . . . . 22 3.3.4.3 最陡下降演算法(Steepest Descent Algorithm, SD) . 23 3.4 總變數限制最小化(Total Variation Minimization) . . . . . . . . . . . 24 4 主要-對偶最佳化(Priaml-Dual Optimization) 25 4.1 Chambolle-Pock 演算法(CP algorithm) . . . . . . . . . . . . . . . . 26 4.2 主要-對偶原形(Primal-Dual Prototype) . . . . . . . . . . . . . . . . 27 4.2.1 參數計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.2 乳房斷層合成中使用的CP 演算法. . . . . . . . . . . . . . . 28 5 實驗設計38 5.1 實驗平台. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2 假體設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.4 投影資料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.5 影像指標. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6 實驗結果與討論42 6.1 最大相似度函數評估. . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.1.1 無高斯雜訊模擬實驗. . . . . . . . . . . . . . . . . . . . . . . 43 6.1.2 加入高斯雜訊模擬實驗. . . . . . . . . . . . . . . . . . . . . 49 ii 6.2 最小平方誤差. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.2.1 無高斯雜訊模擬實驗. . . . . . . . . . . . . . . . . . . . . . . 52 6.2.2 加入高斯雜訊模擬實驗. . . . . . . . . . . . . . . . . . . . . 57 6.3 主要對偶最佳化. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.1 最小平方誤差與非負限制. . . . . . . . . . . . . . . . . . . . 60 6.3.1.1 無高斯雜訊模擬實驗. . . . . . . . . . . . . . . . . 60 6.3.1.2 加入高斯雜訊模擬實驗. . . . . . . . . . . . . . . . 64 6.3.2 最小平方誤差與非負限制及總變數限制. . . . . . . . . . . . 67 6.3.2.1 無高斯雜訊模擬實驗. . . . . . . . . . . . . . . . . 67 6.3.2.2 加入高斯雜訊模擬實驗. . . . . . . . . . . . . . . . 72 7 結論與未來方向76

    [1] W. H. Origanization, “Breast cancer: prevention and control.” http://
    www.who.int/cancer/detection/breastcancer/en/.
    [2] I. Sechopoulos, “A review of breast tomosynthesis. Part I. The image acquisition
    process,” Medical Physics, vol. 40, no. 1, pp. 014301 (1–12), 2013.
    [3] S. Seyyedi and I. Yildirim, “3d digital breast tomosynthesis image reconstruction
    using anisotropic total variation minimization,” in 2014 36th Annual International
    Conference of the IEEE Engineering in Medicine and Biology Society,
    pp. 6052–6055, Aug 2014.
    [4] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theor., vol. 52, pp. 1289–
    1306, Apr. 2006.
    [5] E. Candès and M. Wakin, “An introduction to compressive sampling,” IEEE
    Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.
    [6] M. Ertas, I. Yildirim, M. Kamasak, and A. Akan, “An iterative tomosynthesis
    reconstruction using total variation combined with non-local means filtering,”
    BioMedical Engineering OnLine, vol. 13, pp. 65–65, May 2014.
    [7] A. Chambolle and T. Pock, “A First-Order Primal-Dual Algorithm for Convex
    Problems with Applications to Imaging,” Journal of Mathematical Imaging and
    Vision, vol. 40, no. 1, pp. 120–145, 2011.
    [8] J. G. Mainprize, X. Wang, and M. J. Yaffe, “The effect of lag on image quality
    for a digital breast tomosynthesis system,” 2009.
    78
    [9] T. Fauber, Radiographic Imaging and Exposure - Elsevieron VitalSource. Elsevier
    Health Sciences, 2013.
    [10] A. Smith, “Design considerations in optimizing a breast tomosynthesis system.”
    [11] G. M. Stevens, R. L. Birdwell, C. F. Beaulieu, D. M. Ikeda, and N. J. Pelc,
    “Circular tomosynthesis: Potential in imaging of breast and upper cervical spine?￿
    preliminary phantom and in vitro study,” Radiology, vol. 228, no. 2, pp. 569–575,
    2003. PMID: 12821770.
    [12] D. Xia, S. Cho, J. Bian, E. Y. Sidky, C. A. Pelizzari, and X. Pan, “Tomosynthesis
    with source positions distributed over a surface,” 2008.
    [13] J. Zhang and C. Yu, “A novel solid-angle tomosynthesis (sat) scanning scheme,”
    Medical Physics, vol. 37, pp. 4186–4192, June 2010.
    [14] B. Ren, C. Ruth, J. Stein, A. Smith, I. Shaw, and Z. Jing, “Design and performance
    of the prototype full field breast tomosynthesis system with selenium
    based flat panel detector,” 2005.
    [15] W. Zhao, R. Deych, and E. Dolazza, “Optimization of operational conditions for
    direct digital mammography detectors for digital tomosynthesis,” 2005.
    [16] T. Wu, B. Liu, R. Moore, and D. Kopans, “Optimal acquisition techniques for
    digital breast tomosynthesis screening,” 2006.
    [17] M. P. Kempston, J. G. Mainprize, and M. J. Yaffe, Evaluating the Effect of Dose
    on Reconstructed Image Quality in Digital Tomosynthesis, pp. 490–497. Berlin,
    Heidelberg: Springer Berlin Heidelberg, 2006.
    79
    [18] P. Timberg, M. Båth, I. Andersson, T. Svahn, M. Ruschin, B. Hemdal, S. Mattsson,
    and A. Tingberg, “Impact of dose on observer performance in breast tomosynthesis
    using breast specimens,” 2008.
    [19] R. M. Nishikawa, I. Reiser, P. Seifi, and C. J. Vyborny, “A new approach to
    digital breast tomosynthesis for breast cancer screening,” 2007.
    [20] M. Das, H. C. Gifford, J. M. O?￿Connor, and S. J. Glick, “Evaluation of a
    variable dose acquisition technique for microcalcification and mass detection in
    digital breast tomosynthesis,” Medical Physics, vol. 36, pp. 1976–1984, Mar. 2009.
    [21] Y.-H. Hu and W. Zhao, “The effect of angular dose distribution on the detection
    of microcalcifications in digital breast tomosynthesis,” Medical Physics, vol. 38,
    pp. 2455–2466, Mar. 2011.
    [22] E. A. Rafferty, J. M. Park, L. E. Philpotts, S. P. Poplack, J. H. Sumkin, E. F.
    Halpern, and L. T. Niklason, “Assessing radiologist performance using combined
    digital mammography and breast tomosynthesis compared with digital mammography
    alone: Results of a multicenter, multireader trial,” Radiology, vol. 266,
    no. 1, pp. 104–113, 2013. PMID: 23169790.
    [23] R. L. Siddon, “Fast calculation of the exact radiological path for a threedimensional
    CT array,” Medical Physics, vol. 12, pp. 252–255, Mar. 1985.
    [24] K. Lange and R. Carson, “EM Reconstruction Algorithms for Emission and
    Transmission Tomography,” Journal of Compuler Assisted Tomography, vol. 8,
    no. 2, pp. 306 – 316, 1984.
    80
    [25] K. Lange, M. Bahn, and R. Little, “A Theoretical Study of Some Maximum Likelihood
    Algorithms for Emission and Transmission Tomography,” Medical Imaging,
    IEEE Transactions on, vol. 6, pp. 106–114, June 1987.
    [26] A. De Pierro, “On the relation between the ISRA and the EM algorithm for
    positron emission tomography,” Medical Imaging, IEEE Transactions on, vol. 12,
    pp. 328–333, Jun 1993.
    [27] R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Techniques
    (ART) for three-dimensional electron microscopy and X-ray photography
    ,” Journal of Theoretical Biology, vol. 29, no. 3, pp. 471 – 481, 1970.
    [28] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging.
    IEEE Press, 1988.
    [29] A. Andersen and A. Kak, “Simultaneous Algebraic Reconstruction Technique
    (SART): A superior implementation of the ART algorithm,” Ultrasonic Imaging,
    vol. 6, no. 1, pp. 81 – 94, 1984.
    [30] J. R. Shewchuk, “An introduction to the conjugate gradient method without the
    agonizing pain,” tech. rep., Pittsburgh, PA, USA, 1994.
    [31] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim., vol. 1,
    pp. 127–239, Jan. 2014.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE