研究生: |
謝承憲 Hsieh, Cheng Hsien |
---|---|
論文名稱: |
高電流密度及低電阻率石墨烯-銅內連線之製備與特性研究 Properties and Preparation of High Current Density and Low Resistivity Graphene-Copper Interconnects |
指導教授: |
邱博文
Chiu, Po Wen |
口試委員: |
李奎毅
徐永珍 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 石墨烯 、銅內連線 、內連線 、銅 、電子迴旋共振化學氣相沉積法 、實驗計畫法 |
外文關鍵詞: | graphene, copper interconnect, interconnect, copper, ECR-CVD, design of experiments |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在半導體製程發展的過程中,線寬微縮為主要的趨勢,由1970年的 10 μm逐年下降至近幾年的14 nm、10 nm、7 nm,甚至是5 nm。線寬微縮會使銅內連線中的電子受到銅表面嚴重散射,銅內連線的電阻率隨著線寬微縮逐步上升,電阻-電容延遲也隨之明顯。線寬微縮後,銅內連線上的電流密度也會隨著變大,容易產生電致遷移使銅內連線損壞。本論文係利用電子迴旋共振化學氣相沉積法成長石墨烯於內連線上,石墨烯幫助導電可降低銅內連線電阻,石墨烯也作為覆蓋層,提升銅線可承受的最大電流密度。利用電漿輔助可以降低成長溫度至400°C,有效減少熱預算。本論文一開始先以厚度25 μm銅箔與50 nm銅膜進行測試,並以本實驗室製作的平面式線寬200 nm 銅內連線進行初步測試。再透過一系列實驗設計,找出適合細線寬內連線的實驗參數,將石墨烯沉積於100 nm以下的溝渠式內連線。發現石墨烯可以成功降低電阻率,並提升最大電流密度。此法有機會與目前的後段製程整合,提升內連線穩定度,解決線寬微縮需克服的困難。
During the development of semiconductor process, scaling down node size is the main way to reduce cost and enhance performance. Starting from 10 μm, the node size shrinks to 14 nm, 10 nm, 7 nm, even 5 nm now. Scaling down results in severe electron surface scattering within copper interconnects, thus the resistivity and the RC-delay grow higher. Besides, the current density within copper interconnects is also enhanced so that it is easier for electromigration of copper inside the interconnects which causes failure. In this thesis, the author would like to grow graphene on by ECR-CVD on short line width interconnects. Graphene can reduce the interconnect resistance by shunting with interconnects, and being the capping layer to enhance the breakdown current density interconnects can endure. By using plasma-assisted CVD, the growth temperature can be reduced to 400 °C and lower the thermal budget. The author also grew graphene by ECR-CVD on different thickness of copper, such as copper foil (25 μm in thickness), copper thin film (50 nm in thickness), planar interconnects (200 nm in width) made from our lab. In order to find better parameters for ECR-CVD for trench interconnect (less than 100 nm in width), the author applied design of experiments which can find optimized parameters for ECR-CVD. Finally, the author figure out that graphene can lower the resistivity and enhance the current density of copper interconnects. ECR-CVD has great potentialities integrating with modern backend technology, thus improves the stability of interconnect.
[1] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
[2] R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett., vol. 94, no. 24, p. 243114,
2009.
[3] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N.Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8,
no. 3, pp. 902–907, 2008.
[4] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett., vol. 8, no. 10, pp. 3498–3502, 2008.
[5] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3,
pp. 183–191, 2007.
[6] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R.
Kim, Y. I. Song, et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology, vol. 5, no. 8, pp. 574–578, 2010.
[7] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, “Graphene-based supercapacitor with an ultrahigh energy density,” Nano Lett., vol. 10, no. 12, pp. 4863–4868, 2010.
[8] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev., vol. 74, no. 2, p. 230, 1948.
[9] “Transistor count,” http://en.wikipedia.org/wiki/Transistor_count/.
[10] W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, “Comprehensive study of the resistivity of copper wires with lateral dimensions of
100 nm and smaller,” J. Appl. Phys., vol. 97, no. 2, p. 023706, 2005.
[11] “1997 national technology roadmap for semiconductors,” http://www.rennes.supelec.fr/ren/perso/gtourneu/enseignement/roadmap97.pdf.
[12] D. Yang, C. Gan, P. Chidambaram, G. Nallapadi, J. Zhu, S. Song, J. Xu, and G. Yeap, “Technology-design-manufacturing co-optimization for advanced mobile
socs,” in SPIE Advanced Lithography, pp. 90530N–90530N, International Society for Optics and Photonics, 2014.
[13] “International technology road for semiconductors,” http://www.itrs.net/.
[14] A. Christou, Electromigration and electronic device degradation. Wiley-Interscience, 1994.
[15] Y. Nishi and R. Doering, Handbook of semiconductor manufacturing technology. CRC Press, 2000.
[16] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, “Damascene copper electroplating for chip interconnections,” IBM Journal of Research
and Development, vol. 42, no. 5, pp. 567–574, 1998.
[17] J. D. Plummer, “Silicon vlsi technology: fundamentals, practice, and modeling,” p. 570, 2000.
[18] H. Wendt, H. Cerva, V. Lehmann, and W. Pamler, “Impact of copper contamination on the quality of silicon oxides,” Journal of Applied Physics, vol. 65, no. 6, pp. 2402–2405, 1989.
[19] M. Setton, J. Van der Spiegel, and B. Rothman, “Copper silicide formation by rapid thermal processing and induced room-temperature si oxide growth,” Appl. Phys. Lett., vol. 57, no. 4, pp. 357–359, 1990.
[20] J. R. Black, “Electromigration¡xa brief survey and some recent results,” Electron Devices, IEEE Transactions on, vol. 16, no. 4, pp. 338–347, 1969.
[21] S. Holzer, “3.7.1 electro-migration,” http:// www.iue.tuwien.ac.at/phd/holzer/node52.html.
[22] J. Lloyd, J. Clemens, and R. Snede, “Copper metallization reliability,” Microelectronics Reliability, vol. 39, no. 11, pp. 1595–1602, 1999.
[23] D. Kwon, H. Park, and C. Lee, “Electromigration resistance-related microstructural change with rapid thermal annealing of electroplated copper films,” Thin Solid
Films, vol. 475, no. 1, pp. 58–62, 2005.
[24] I. Blech, “Electromigration in thin aluminum films on titanium nitride,” J. Appl. Phys., vol. 47, no. 4, pp. 1203–1208, 1976.
[25] I. Blech and E. Kinsbron, “Electromigration in thin gold films on molybdenum surfaces,” Thin Solid Films, vol. 25, no. 2, pp. 327–334, 1975.
[26] M. Shatzkes and J. Lloyd, “A model for conductor failure considering diffusion concurrently with electromigration resulting in a current exponent of 2,” J. Appl. Phys., vol. 59, no. 11, pp. 3890–3893, 1986.
[27] J. Clement and J. Lloyd, “Numerical investigations of the electromigration boundary value problem,” J. Appl. Phys., vol. 71, no. 4, pp. 1729–1731, 1992.
[28] C. M. Tan and A. Roy, “Electromigration in ulsi interconnects,” Materials Science and Engineering: R: Reports, vol. 58, no. 1, pp. 1–75, 2007.
[29] C.-K. Hu, L. Gignac, R. Rosenberg, B. Herbst, S. Smith, J. Rubino, D. Canaperi,
S. Chen, S. Seo, and D. Restaino, “Atom motion of cu and co in cu damascene lines with a cowp cap,” Appl. Phys. Lett., vol. 84, no. 24, pp. 4986–4988, 2004.
[30] T. Nogami, C. Penny, A. Madan, C. Parks, J. Li, P. Flaitz, A. Uedono, S. Chiang, M. He, A. Simon, et al., “Electromigration extendibility of cu (mn) alloy-seed interconnects, and understanding the fundamentals,” in Electron Devices Meeting (IEDM), 2012 IEEE International, pp. 33–7, IEEE, 2012.
[31] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, no. 9, p. 622, 1947.
[32] J. Yao, Y. Sun, M. Yang, and Y. Duan, “Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine,”
J. Mater. Chem., vol. 22, no. 29, pp. 14313–14329, 2012.
[33] A. Jorio, M. S. Dresselhaus, R. Saito, and G. Dresselhaus, Raman spectroscopy in graphene related systems. John Wiley & Sons, 2010.
[34] L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol. 473, no. 5, pp. 51–87, 2009.
[35] L. Cancado, K. Takai, T. Enoki, M. Endo, Y. Kim, H. Mizusaki, A. Jorio, L. Coelho, R. Magalhaes-Paniago, and M. Pimenta, “General equation for the determination of the crystallite size la of nanographite by raman spectroscopy,” Appl. Phys. Lett., vol. 88, no. 16, pp. 163106–163106, 2006.
[36] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, et al., “Raman spectrum of graphene and graphene
layers,” Phys. Rev. Lett., vol. 97, no. 18, p. 187401, 2006.
[37] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, et al., “Electronic confinement and coherence in patterned
epitaxial graphene,” Science, vol. 312, no. 5777, pp. 1191–1196, 2006.
[38] S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, “A chemical route to graphene for device applications,” Nano Lett., vol. 7, no. 11, pp. 3394–3398, 2007.
[39] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, “Graphene segregated on ni surfaces and transferred to insulators,” Appl. Phys. Lett., vol. 93, no. 11, p. 113103, 2008.
[40] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, et al., “Large-area synthesis of high-quality and uniform graphene films
on copper foils,” Science, vol. 324, no. 5932, pp. 1312–1314, 2009.
[41] S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, “Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper
catalyst,” Nano Lett., vol. 10, no. 10, pp. 4128–4133, 2010.
[42] Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang, and J. Hou, “Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources,” ACS nano, vol. 5, no. 4, pp. 3385–3390, 2011.
[43] X. Wan, K. Chen, D. Liu, J. Chen, Q. Miao, and J. Xu, “High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons,” Chem. Mater., vol. 24, no. 20, pp. 3906–3915, 2012.
[44] A. Gurevich, N. Borisov, and G. Milikh, Physics of microwave discharges: artificially ionized regions in the atmosphere. CRC Press, 1997.
[45] H. Medina, Y.-C. Lin, C. Jin, C.-C. Lu, C.-H. Yeh, K.-P. Huang, K. Suenaga, J. Robertson, and P.-W. Chiu, “Metal-free growth of nanographene on silicon
oxides for transparent conducting applications,” Advanced Functional Materials, vol. 22, no. 10, pp. 2123–2128, 2012.
[46] C.-H. Yeh, H. Medina, C.-C. Lu, K.-P. Huang, Z. Liu, K. Suenaga, and P.-W. Chiu, “Scalable graphite/copper bishell composite for high-performance interconnects,”
ACS nano, vol. 8, no. 1, pp. 275–282, 2014.
[47] K. Chavez and D. Hess, “A novel method of etching copper oxide using acetic acid,” J. Electrochem. Soc., vol. 148, no. 11, pp. G640–G643, 2001.
[48] M. Baklanov, D. Shamiryan, Z. Tökei, G. Beyer, T. Conard, S. Vanhaelemeersch, and K. Maex, “Characterization of cu surface cleaning by hydrogen plasma,” Journal of Vacuum Science & Technology B, vol. 19, no. 4, pp. 1201–1211, 2001.
[49] Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,” Nanoscale,
vol. 5, no. 12, pp. 5180–5204, 2013.
[50] M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, “Graphene cvd growth on copper and nickel: role of hydrogen in kinetics and structure,” Phys. Chem. Chem. Phys., vol. 13, no. 46, pp. 20836–20843, 2011.
[51] M. Yan, K. Tu, A. Vairagar, S. Mhaisalkar, and A. Krishnamoorthy, “A direct measurement of electromigration induced drift velocity in cu dual damascene interconnects,” Microelectronics Reliability, vol. 46, no. 8, pp. 1392–1395, 2006.
[52] C.-K. Hu, R. Rosenberg, and K. Lee, “Electromigration path in cu thin-film lines,” Applied Physics Letters, vol. 74, no. 20, pp. 2945–2947, 1999.
[53] “Student’s t-test,” https://en.wikipedia.org/wiki/Student’s_t-test.