簡易檢索 / 詳目顯示

研究生: 沈仕旻
Shen, Shih-Ming
論文名稱: 載子控制層強化有機發光二極體之研究
Study of Carrier-Controlling Layer Enhanced Organic Light-Emitting Diodes
指導教授: 周卓煇
Jou, Jwo-Huei
口試委員: 許千樹
鄭木海
吳華書
薛景中
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 121
中文關鍵詞: 有機發光二極體載子控制層高效率超高演色性載子再結合
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用載子控制層,包含電子侷限層、電洞傳輸層、以及電洞調制層等,來研製高效率與超高演色性有機發光二極體(Organic Light- Emitting Diode, OLED),所製備之元件,可分為三部分作探討。
    第一部分,本研究利用電子侷限層,來提升載子再結合率,研製出高效率磷光橘紅光有機發光二極體,在此研究中,比較了(1)未使用電子侷限層,與(2)使用2,7-bis(carbazo-9-yl)-9,9-ditolyfluorene (Spiro-2CBP) ,以及(3)使用di-[4-(N,N-ditolyl-amino)-phenyl] cyclohexane (TAPC) 為電子侷限層之元件,結果發現,使用TAPC之元件,在亮度100 cd/m2下,效率由39.5 cd/A提升至46.2 cd/A,在1,000 cd/m2下,則由34.5 cd/A提升至44.8 cd/A;效率提升可歸因於TAPC有效阻擋電子於發光層中,進而提高載子再結合機率;同時,TAPC兼具了阻擋部分電洞注入發光層之功能,使得元件在發光層中達載子注入平衡,而獲得更高之發光效率。
    第二部份,本研究利用具高發光效率之天藍光與紅光染料,搭配具高能量轉移效率之主客體,製作一螢光白光OLED,在亮度100與1,000 cd/m2下,能量效率為分別為11.9與9.1 lm/W,在加入第二電洞傳輸層N,N’-bis-(1-naphthyl)-N,N’-diphenyl-1,10-biphenyl- 4-4’-diamine (NPB)後,在100 cd/m2下,元件效率提升59 %至18.9 lm/W,在1,000 cd/m2下,更大幅提升81 %至16.5 lm/W;這可歸因於NPB的加入,形成一電洞注入能障,有效阻擋部份電洞進入發光層中,達到載子注入平衡,進而提升元件效率,而在高亮度下(等同於高電壓、高電流密度下),NPB的電洞阻擋效果更加顯著,使得元件效率提升幅度更為明顯。
    在第三部份,本研究研製出一具有超高演色性(color-rendering index, CRI)之白光OLED,元件在100 cd/m2下,CRI 達98,效率為8.3 lm/W,在1,000 cd/m2下,CRI為96,效率為5.2 lm/W;此超高演色性可歸因於使用可構成全波段光譜之染料,以及加入適當厚度之電洞調制層1,3,5-trisN-phenylbenzimidazol-2-ylbenzene於兩白光發光層之間,電洞調制層可將電洞適當地分配在兩發光層中,使所有染料分子有效且恰當地放光,獲得一近乎全波段的光譜,相較之下,未使用電洞調制層之元件,因電洞過度集中於單一發光層,所得演色性僅73;值得一提的是,此超高演色性OLED之元件效率,是目前演色性超過95的元件中最高的,而在100 cd/m2到5,000 cd/m2間,均維持大於96的超高演色性,且非常貼近日光曲線(daylight locus),使其具有潛力成為高品質照明光源。
    總括而言,本研究主要貢獻為藉由載子控制層的使用,大幅提升白光與橘紅光OLED元件之能量與電流效率,以及研製出超高演色性OLED元件。而在超高演色性元件的研究中,更是使用以往只被用來作為電子傳輸層之材料1,3,5-trisN-phenylbenzimidazol-2-ylbenzene,來作為關鍵的電洞調制層,這打破了以往元件設計的基本觀念,也表示任何材料皆可有多種功能,這將由其放置在元件內之位置來決定,且往往有預料外的效果,值得有機電子領域的研究人員作為參考。


    In the study, we incorporate carrier-controlling layers, including electron-blocking layer (EBL), hole-transporting layer (HTL) and hole-modulating layer (HML), to develop and fabricate highly efficient and very-high color rendering index (CRI) organic light-emitting diodes (OLEDs). The investigated devices are shown as follow.
    In Part I, we demonstrate an efficient orange-red phosphorescent OLED using a novel host, 2,7-bis(carbazo-9-yl)-9,9-ditolyfluorene, doped with tris(2-phenylquinoline) iridium(III), as well as a thin EBL of 1,1-bis-(4-bis(4-methylphenyl)-aminophenyl)-cyclohexane (TAPC) is deposited prior to the emissive layer. The resulting device exhibits a current efficiency of 44.8 cd/A at 1,000 cd/m2. This high efficiency may be attributed to the adoption of the host, which favors the injection of holes, as well as the emissive-layer architecture enabling excitons to form on the host and hence favoring efficient energy-transfer from host to guest. The TAPC layer helps to modulate excessive holes to be injected into the emissive layer and to confine the electrons, which would in turn balance the injection of both carriers and improve the device efficiency, either at low or high voltages.
    In Part II, we demonstrated the use of double HTLs, poly(3,4-ethylene-dioxythiophene)-poly-(styrenesulfonate) (PEDOT:PSS) and N,N’-bis-(1-naphthyl)-N,N’-diphenyl-1,10-biphenyl-4-4’-diamine (NPB), to modify the hole injection characteristics, to balance the injection of carriers, and consequently to improve the device efficiency. With the addition of a 7.5 nm second HTL (NPB), the resultant power-efficiency at 100 cd/m2 was increased from 11.9 to 18.9 lm/W, an improvement of 59%. The improvement was even more marked at 1,000 cd/m2, i.e. that the power-efficiency was increased from 9.1 to 16.5 lm/W, an improvement of 81%. The marked efficiency improvement may be attributed to a better balance of carrier-injection in the desired emissive zone since the addition of the NPB layer in between the first HTL and the EML may have effectively reduced the injection of excessive holes into the EML due to the relatively high energy-barrier to holes, which was 0.5 eV, at the interface of the two HTLs.
    In Part III, we demonstrate an efficient very-high CRI OLED with a CRI of 98 and an efficacy of 8.3 lm/W at 100 cd/m2, or a CRI of 96 and an 5.2 lm/W at 1,000 cd/m2. The very high CRI may be attributed to the successful deposition and emission of the two full-spectrum complementary white emissive layers, especially as a thin HML is inserted in between to regulate the injection of carriers. Without the interlayer, the resultant CRI drops to 73 and efficacy to 3.6 lm/W at 1,000 cd/m2. The employment of the carrier regulating layer also helps disperse the injected carriers, leading recombination to occur in a wider area and hence a higher efficiency. Moreover, it is worth mentioning that the CRI remained around 96 to 98 throughout the brightness range over which we investigated. The CIE coordinates of the very high CRI OLED also fall within the pure-white region and are very close to daylight (Planckian) locus, indicating the device to possess the characteristics required for high-quality illumination.
    In summary, the main contribution of this study is to markedly increase the power and current efficiencies of white and orange-red OLEDs and to fabricate a efficient very-high CRI OLED by using carrier-controlling layers. In the study of very-high CRI OLED, we use 1,3,5-trisN-phenylbenzimidazol-2-ylbenzene, a general electron-transporting layer, as the hole-modulating layer. This is a novel concept on the design of device structure. This also implies that any materials will have unanticipated functions if we use it at a different position in device. This is a very useful concept for the researchers in the field of organic electronics.

    目錄 壹、緒論 1 貳、文獻回顧 4 2-1 分子發光機制 4 2-1-1 激發 4 2-1-2衰變(decay) 6 2-2元件發光原理 8 2-2-1主客體摻雜與能量轉移 9 2-2-2載子的注入、傳導與再結合 11 2-2-3螢、磷光量子產率 15 2-3有機發光二極體發展之歷史沿革 19 2-4有機電激發光二極體材料 29 2-5有機發光二極體元件發展近況 35 2-5-1紅光有機發光二極體之發展 36 2-5-2螢光白光有機發光二極體之發展 38 2-5-3超高演色性白光有機發光二極體之發展 43 參、實驗方法 46 3-1 材料 46 3-2材料性質之量測 50 3-3元件基板前處理與電路設計 51 3-4旋塗溶液之準備 53 3-5蒸鍍源之製備 53 3-6旋轉塗佈 54 3-7蒸鍍裝置 55 3-8無機層與陰極之製備 56 3-9蒸鍍速率之測定與校正 56 3-10元件電流、電壓與亮度特性量測 58 3-11發光效率之計算 59 3-12電致發光光譜(Electroluminescent spectrum,EL spectra)之量測 59 3-13 CIE色座標與演色性指數 (Color rendering index,CRI )之量測 60 肆、結果與討論 61 4-1以電子侷限層強化高效率橘紅光有機發光二極體 61 4-1-1研究動機 61 4-1-2主體材料對元件效能之影響 61 4-1-3電子侷限層對元件效能之影響 66 4-1-4 總結 70 4-2以第二電洞傳輸層強化高效率白光有機發光二極體 73 4-2-1研究動機 73 4-2-2第二電洞傳輸層厚度對元件效能之影響 73 4-2-3總結 79 4-3以電洞調制層研製超高演色性有機發光二極體 81 4-3-1研究動機 81 4-3-2雙波段單白光發光層有機發光二極體 82 4-3-3三波段單白光發光層有機發光二極體 85 4-3-4超高演色性雙白光發光層有機發光二極體 88 4-3-5總結 99 伍、結論 101 陸、參考文獻 104 附錄、個人著作目錄 117 表目錄 表一、不同材料旋塗轉速與膜厚之關係圖 54 表二、本研究所用有機材料之膜厚校正數據 57 表三、主體材料以及電子侷限層結構對元件效能之影響 71 表四、使用不同第二電洞傳輸層厚度之元件發光特性 79 表五、雙波段白光OLED元件發光特性表 83 表六、三波段白光OLED元件發光特性表 86 表七、使用不同電洞調制層厚度之雙白光發光層OLED發光特性表 99   圖目錄 圖一、光激發的能階示意圖 4 圖二、電激發的能階示意圖 5 圖三、電子與電洞經再結合後之能量分配及能階示意圖 6 圖四、Jablonski能階圖 7 圖五、OLED(a)元件結構圖與(b)元件發光機制 23 圖六、Förster與Dexter能量傳遞機制示意圖 25 圖七、分子衰變過程路徑圖 26 圖八、外部量子效率計算過程 18 圖九、柯達公司首創異質介面的雙層元件結構及能階示意圖 20 圖十、英國Calvendish實驗室使用共軛高分子的單層PLED結構 21 圖十一、日本九州大學Saito教授研究群提出的OLED元件結構 22 圖十二、日本九州大學Saito教授研究群提出之三層式OLED元件結構 23 圖十三、1992年日本山形大學Kido教授提出再結合區域分別具電洞與電子傳輸功能之發光層的OLED元件結構 23 圖十四、Leo教授團隊發表p-i-n結構之OLED元件能階示意圖 25 圖十五、堆疊式有機發光二極體示意圖 25 圖十六、2006年美國普林斯頓大學Forrest教授研究團隊發表螢磷光混合型白光OLED元件結構與能量傳遞示意圖 26 圖十七、使用半圓出光結構之有機發光二極體示意圖 27 圖十八、以溶劑預混法製備發光層蒸鍍源之步驟示意圖 28 圖十九、1931國際照明標準委員會制定之(x, y)色座標 35 圖二十、本研究使用之有機材料分子結構圖 47 圖二十一、OLED元件之電路設計圖 52 圖二十二、真空蒸鍍系統示意圖 55 圖二十三、OLED元件之電流-電壓-亮度(I-V-L)、CIE色座標量測示意圖,以及計算元件效率之流程 56 圖二十四、使用不同主體材料之橘紅光OLED元件結構示意圖 62 圖二十五、主體材料對元件電流密度之影響 62 圖二十六、使用不同主體之橘紅光有機發光二極體元件能階結構圖 63 圖二十七、主體材料對元件亮度之影響 64 圖二十八、主體材料對元件(a)能量效率與(b)電流效率之影響 65 圖二十九、加入電子侷限層之元件能階結構圖 67 圖三十、子侷限層結構對元件亮度之影響 68 圖三十一、電子侷限層結構對元件能量效率之影響 69 圖三十二、電子侷限層結構對元件電流效率之影響 70 圖三十三、橘紅光與紅光OLED元件電流效率表現比較圖 72 圖三十四、使用雙電洞傳輸層之白光OLED元件結構圖 73 圖三十五、NPB厚度對元件電流密度之影響 75 圖三十六、NPB厚度對元件亮度之影響 75 圖三十七、NPB厚度對元件能量效率之影響 76 圖三十八、未使用與使用第二電洞傳輸層NPB之元件,在不同外加電壓下之 載子可能分布圖 77 圖三十九、使用第二電洞傳輸層與否,對元件色安定性之影響示意圖 78 圖四十、自1995年以來,螢光型白光有機發光二極體之能量效率記錄圖 80 圖四十一、雙波段單白光發光層OLED元件結構示意圖 82 圖四十二、黃光染料Rubrene摻雜濃度對雙波段單層白光OLED元件在1,000 cd/m2下之(a) 電激發光光譜及其演色性與(b) CIE1931色座標位置之影響 84 圖四十三、三波段單白光發光層OLED元件結構示意圖 85 圖四十四、紅光染料Ir(piq)2(acac)摻雜濃度對雙波段單層白光OLED元件在1,000 cd/m2下之(a) 電激發光光譜及其演色性與(b) CIE1931色座標位置之影響 87 圖四十五、元件Ia~Ic、IIa~IIc與日光曲線之CIE色座標示意圖 89 圖四十六、元件(a) Ia與IIc、(b)Ib與IIc、以及(c)Ic與IIc之不同強度比例光譜疊加模擬結果與其相對演色性 90 圖四十七、雙白光發光層OLED元件結構圖 91 圖四十八、電洞調製層(HML)厚度對雙白光發光層OLED之EL光譜及光譜 演色性之影響 92 圖四十九、使用不同HML厚度之雙白光層OLED元件CIE色座標 93 圖五十、雙白光發光層元件IIIa、IIIb與IIIc之元件能階結構與電子電洞的 可能分佈示意圖 94 圖五十一、元件IIIc在不同亮度下之電激發光光譜及其色座標位置 96 圖五十二、(a)元件IIIb在1000 cd/m2下之EL光譜,以及元件Ic與IIc以亮度500與1,000 cd/m2之光譜所作之疊加光譜;(b)元件Ic在500與1,000 cd/m2下之光譜;(c) 元件IIc在500與1000 cd/m2下之光譜 97 圖五十三、單白光發光層元件(Ic、IIc)與雙白光發光層元件電流密度圖 98 圖五十四、高演色性雙白光發光層OLED元件與目前白光OLED元件演色性與 相對能量效率比較圖 100

    1. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999)
    2. J. H. Jou, M. F. Hsu, W. B. Wang, C. L. Chin, Y. C. Chung, C. T. Chen, J. J. Shyue, S. M. Shen, M. H. Wu, W. C. Chang, C. P. Liu, S. Z. Chen, and H. Y. Chen, Chem. Mater. 21, 2565 (2009)
    3. H. Sasabe, E. Gonmori, T. Chiba, Y. J. Li, D. Tanaka, S. J. Su, T. Takeda, Y. J. Pu, K. I. Nakayama and J. Kido, Chem. Mater. 20 (19), 5951 (2008).
    4. S. J. Su, T. Chiba, T. Takeda and J. Kido, Adv. Mater. 20 (11), 2125 (2008).
    5. J. H. Jou, S. M. Shen, S. H. Chen, M. H. Wu, W. B. Wang, H. C. Wang, C. R. Lin, Y. C. Chou, P. H. Wu, and J. J. Shyue, Appl. Phys. Lett. 96, 143306 (2010)
    6. J. H. Jou, C. J. Wang, Y. P. Lin, Y. C. Chung, P. H. Chiang, M. H. Wu, C. P. Wang, C. L. Lai, and C. Chang, Appl. Phys. Lett. 92, 223504 (2008)
    7. Y. C. Tsai, and J. H. Jou, Appl. Phys. Lett. 89, 243521 (2006)
    8. I. Navigant Consulting, ssl-energy-savings-report, (2010)
    9. A. P. Kulkarni, C. J. Tonzola, A. Babel and S. A. Jenekhe, Chem. Mat. 16 (23), 4556-4573 (2004).
    10. G. Hughes and M. R. Bryce, J. Mater. Chem. 15 (1), 94-107 (2005).
    11. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Slbley, M. E. Thompson, S. R. Forrest, Nature 195, 151 (1998).
    12. S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap 1 (1997).
    13. M. Pope and C. E. Swenberg, Electronic Process in Organic Crystal and Polyermer, Second Edition, Oxford University Press, New York, 1999.
    14. Dodabalapur and Bell Lab., Solid State Com. 1997, 102, 259
    15. K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, K. Seki, J. Appl. Phys. 83, 4928 (1998).
    16. T. Förster, Ann. Phys. 6, 55 (1948).
    17. L. Dexter, J. Chem. Phys. 21, 836 (1953).
    18. 陳金鑫, 黃孝文, OLED有機電激發光材料與元件 (2005)
    19. M. Klessonger, J. Michl, ”Excited Stated and Photochemistry of Organic Molecules”, VCH Publishers, New York (1995)
    20. D. K. Schroder, Semiconductor Material and Device Characterization, Wiley-Interscience, 1998, Chap 3.
    21. J. Kalinowski, J. Phys. D: Appl. Phys. 1999, 32, R179
    22. U. Wolf, V. I. Arkhipov, H. Bässler, Phys. Rev. B, 59, 7507 (1999).
    23. M. A. Lampert, P. Mark, Current Injection in Solids 1970, New York, Academic Press.
    24. S. Miyata and H. S. Nalwa, Organic Electroluminescence Material and Devices, Golden and Breach Science Publisher, Netherlands, 1997, Chap. 3.
    25. P. E. Burrow, Z. Shen, and V. Bulovic, D. M. McCarty, S. R. Forrest, J. Appl. Phys. 1996, 79, 7991
    26. V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov and S. R. Forrest, Phys. Rev. B 58 (7), 3730 (1998).
    27. Bernanose, M. Conet, P. Vouauzx, J. Chem. Phys. 50, 64 (1953).
    28. P. Pope, H. P. Kallmann, and P. J. Magnante, Chem. Phys. 38, 2042 (1963).
    29. W. Helfrich, W. G. Schneider, Phys. Rev. Lett. 14, 229 (1965).
    30. W. Helfrich, W. G. Schneider, J. Chem. Phys. 44, 2902 (1966).
    31. P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Robert, Solid Thin Films, 94, 171 (1982).
    32. C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
    33. S. A. VanSlyke, C. W. Tang, and L. C. Robert, US. Patent 1988, No. 4,720,432.
    34. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
    35. J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature 347, 539 (1990)
    36. R. H. Friend, J. H. Burroughs, and D. D. C. Bradley, US. Patent 1993, No. 5,247,190.
    37. C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 27, 713 (1988).
    38. M. Era, C. Adachi, T. Tsutsui, S. Saito, Chem. Phys. Lett. 178, 488 (1991).
    39. J. Kido, M. Kohda, K. Okuyama, K. Nagai, Appl. Phys. Lett. 61, 761 (1992).
    40. J. Kido, M. Kimura, K. Nagai, Science, 267, 1332 (1995).
    41. J. Shi, C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997).
    42. G. E. Jebbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Appl. Phys. Lett. 73, 1185 (1998).
    43. J. Kido, T. Mazukami, US. Patent 2000, No. 6,013,384.
    44. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Slbley, M. E. Thompson, S. R. Forrest, Nature 195, 151 (1998).
    45. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 75, 1 (1999)
    46. J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Liu, Appl. Phys. Lett. 80, 1 (2002)
    47. L. S. Liao, K. P. Klubek, and C. W. Tang, Appl. Phys. Lett. 84, 2 (2004)
    48. Y. Sun, N. C. Giebink, H. Kanno, B Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 04645 (2006).
    49. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem and K. Leo, Nature 459 (7244), 234 (2009).
    50. Y. Shao, Y. Yang, Appl. Phys. Lett. 86, 073510 (2005)
    51. J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, and H. C. Hu, Appl. Phys. Lett. 88, 193501 (2006)
    52. 周卓煇、孫銘成,中華民國專利 I293234
    53. J. Yang and J. Shen, J. Appl. Phys., 84, 2105 (1998).
    54. Z. Liu, J. Pinto, J. Soaves, E. Pereira, Synth. Metals, 122, 177 (2001).
    55. M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga, Journal of Luminescence, 87, 1165 (2000).
    56. J. S. Kim, M. Granström, R. H. Frienf, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, F Cacialli, J. Appl. Phys. 84, 6859 (1998).
    57. S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A, 68, 447 (1999).
    58. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl. Phys. 86, 1688 (1999).
    59. S. A.VanSlyke, C. H. Chen, C.W. Tang; Appl. Phys. Lett., 69, 2160 (1996).
    60. Y. Shirota, Y. Kuwabara, H. Inada, Appl. Phys. Lett., 65, 807 (1994).
    61. A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, Synth. Met., 111, 139 (2000).
    62. K. A. Higginson, X. Zhang, F. Padaimitrakoppulos, Chem. Mater. 10, 1017(1998).
    63. S. A. VanSlyke, C. H. Chen, C. W. Tang, US. Patent 1991, No. 5,061,569.
    64. C. Hosokawa, H. Higashi, T. Kusumoto, Appl. Phys. Lett. 62, 3238 (1993).
    65. S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
    66. J. Sal`beck, N.Yu, J.Bauer, F. Weissötel, H. Bestgen, Synth. Met., 91, 209 (1997).
    67. Y. Shirota, K. Okumoto, H. Inada, Synth. Met., 111, 387. (2000)
    68. H. Yan, P. Lee, N. R. Armstrong, A. Graham, G. A. Evmenenko, P. Dutta, T. J. Marks, J. Am. Chem. Soc., 127, 3172 (2005).
    69. C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett. 55 (15), 1489 (1989).
    70. C. H. Chen, J. Shi and C. W. Tang, Patent No. EP825804-A; US5645948-A; EP825804-A2; JP10092578-A; EP825804-B1; DE69710135-E; JP3992794-B2 (EP825804-A US5645948-A 08 Jul 1997 H05B-033/20 199733).
    71. S. Naka, H. Okada, H. Onnagawa and T. Tsutsui, Appl. Phys. Lett. 76 (2), 197 (2000).
    72. B. W. D'Andrade, S. R. Forrest and A. B. Chwang, Appl. Phys. Lett. 83 (19), 3858 (2003).
    73. H. Sasabe, E. Gonmori, T. Chiba, Y. J. Li, D. Tanaka, S. J. Su, T. Takeda, Y. J. Pu, K. I. Nakayama and J. Kido, Chem. Mater. 20 (19), 5951 (2008).
    74. H. Sasabe, D. Tanaka, D. Yokoyama, T. Chiba, Y. J. Pu, K. Nakayama, M. Yokoyama, J. Kido, Adv. Funct. Mater. 21, 336 (2011).
    75. S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, Appl. Phys. Lett. 84, 2324 (1998).
    76. T. Mori, H. Fujikawa, S. Tokito, V. Taga, Appl. Phys. Lett. 73, 2763 (1998).
    77. H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. Von Seggern, M. Stoel, J. Appl. Phys. 89, 420 (2001)
    78. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, M. Tsuchida, IEEE Trans. Electron. Devices. 1997, 44, 1245.
    79. T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, F. Cacialli, J. Appl. Phys. 2003, 93, 6159.
    80. T. Wakimoto, Y. Fukuda, K, Nagayama, A. Yokoi, H. Nakada, M. Tsuchida, IEEE Trans. Electron. Device, 44, 1245 (1997).
    81. C Ganzorig, K Suga, M. Fujihira, Mater. Sci. Eng. B 85, 140 (2001).
    82. K. S. Yook, S. O. Jeon, S. Y. Min, J. Y. Lee, H. J. Yang, T. Noh, S. K. Kang, T. W. Lee, Adv. Funct.Mater. 20, 1797 (2010)
    83. T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, F. Cacialli, J. Appl. Phys. 93, 6159 (2003)
    84. J. Kido, T. Matsumoto, Appl. Phys. Lett., 73, 2866 (1998)
    85. L. S. Hung, and C. W. Tang, US. Patent 1997, No. 5,677,572.
    86. M. A. Baldo, D. F. Brlen, and S. R. Forrect, US. Patent 2000, No. 6,097,147.
    87. Commission Internationale de L’eclairage (CIE), Colorimetry, Publication Report No. 15.2, 1986.
    88. C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson and R. C. Kwong, Appl. Phys. Lett. 78 (11), 1622 (2001).
    89. Z. Liu, Z. Bian , F. Hao, D. Nie, F. Ding, Z. Chen, C. Huang, Org. Electron. 10, 247 (2009).
    90. W. S. Jeon, T. J. Park, S. Y. Kim, R. Pode, J. Jang ,J. H. Kwona, Org. Electron. 10, 240 (2009).
    91. Y. Tao, Q. Wang, C. Yang, Q. Wang, Z. Zhang, T. Zou, J. Qin, D. Ma, Angew. Chem. Int. Ed. 47, 8104 (2008).
    92. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino and K. Ueno, J. Am. Chem. Soc. 125 (42), 12971 (2003).
    93. J. P. Duan, P. P. Sun and C. H. Cheng, Adv. Mater. 15 (3), 224 (2003).
    94. K. Saito, N. Matsusue, H. Kanno, Y. Hamada, H. Takahashi and T. Matsumura, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 43 (5A), 2733-2734 (2004).
    95. J. S. Huang, T. Watanabe, K. Ueno and Y. Yang, Advanced Materials 19 (5), 739 (2007).
    96. Y. L. Tung, S. W. Lee, Y. Chi, Y. T. Tao, C. H. Chien, Y. M. Cheng, P. T. Chou, S. M. Peng and C. S. Liu, J. Mater. Chem. 15 (4), 460 (2005)
    97. C. H. Wu, P. I. Shih, C. F. Shu and Y. Chi, Appl. Phys. Lett. 92 (23), 233303 (2008).
    98. C. H. Chien, F. M. Hsu, C. F. Shu and Y. Chi, Org. Electron. 10 (5), 871 (2009).
    99. Y. L. Tung, L. S. Chen, Y. Chi, P. T. Chou, Y. M. Cheng, E. Y. Li, G. H. Lee, C. F. Shu, T. I. Wu and A. J. Carty, Adv. Funct. Mater. 16 (12), 1615 (2006).
    100. P. P. Sun, J. P. Duan, H. T. Shih and C. H. Cheng, Appl. Phys. Lett. 81 (5), 792 (2002).
    101. J. F. Fang and D. G. Ma, Appl. Phys. Lett. 83 (19), 4041 (2003).
    102. H. Xia, C. B. Zhang, X. D. Liu, S. Qiu, P. Lu, F. Z. Shen, J. Y. Zhang and Y. G. Ma, J. Phys. Chem. B 108 (10), 3185 (2004).
    103. X. Z. Jiang, A. K. Y. Jen, B. Carlson and L. R. Dalton, Appl. Phys. Lett. 80 (5), 713 (2002).
    104. J. Kido, K. Hongawa, K. Okuyama, K. Nagai, Appl. Phys. Lett. 1994, 64, 815.
    105. J. Kido, H. Shionoya, K. Nagai, Appl. Phys. Lett. 1995, 67, 2281.
    106. R. H. Jordan, A. Dodabalapur, M. Strukelj, and T. M. Miller, Appl. Phys. Lett. 1996, 68, 1192.
    107. Kido, Organic Electroluminescence Material and Display, 2001, Chap17.
    108. S. Naka, K. Shinno, and H. Anada, Electron. Trans. IEICE. 1997, 80, 1114.
    109. S. R. Forrest, R. S. Desphande, and V. Bulovic, Appl. Phys. Lett. 1999, 75, 888.
    110. Kido, Organic Electroluminescence Material and Display, 2001, Chap23.
    111. H. Chuen and Y. T. Tao, Appl. Phys. Lett. 2002, 81, 4499.
    112. Y. S. Huang, J. H. Jou, W. K. Weng, and J. M. Liu, Appl. Phys. Lett. 2002, 80, 2782.
    113. G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma, and S. T. Lee, Appl. Phys. Lett. 2003, 82, 4224.
    114. G. Li, and J. Shinar, Appl. Phys. Lett. 2003, 83, 5359.
    115. 林瑋哲,碩士論文,國立清華大學材料科學與工程研究所,2004。
    116. T. S. Liu, Y. S. Wu, M. T. Lee, H. H. Chen, C. H. Liao, and C. H. Chen, Appl. Phys. Lett. 2004, 85, 4304
    117. J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li, R. S. Liu, Organic Electronics, 2007, 8, 29.
    118. Q. X. Tong, S. L. Lai, M. Y. Chan, J. X. Tang, H. L. Kwong, C. S. Lee, S. T. Lee, Appl. Phys. Lett.91, 023503 (2007).
    119. J. H. Jou, C. C. Chen, Y. C. Chung, M. T. Hsu, C. H. Wu, S. M. Shen, M. H. Wu, W. B. Wang, Y. C. Tsai, C. P. Wang and J. J. Shyue, Adv. Funct. Mater. 18 (1), 121 (2008).
    120. Navigant Consulting, Energy Savings Potential of Solid-State Lighting in General Illumination Application 2010 to 2030 (2010).
    121. G. Cheng, Y. F. Zhang, Y. Zhao, Y. Y. Lin, C. Y. Ruan, S. Y. Liu, T. Fei, Y. G. Ma, Y. X. Cheng, Appl. Phys. Lett., 2006, 89, 147.
    122. G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer, K. Leo, Adv. Mater. 2007, 19, 3672
    123. X. M. Yu, G. J. Zhou, C. S. Lam, W. Y. Wong, X. L. Zhu, J. X. Sun, M. Wong, H. S. Kwok, J. Organomet. Chem., 2008, 693, 1518.
    124. X. Niu, L. Ma, B. Tao, J. Ding, G. Tu, Z. Xie, L. Wang, Appl. Phys. Lett 89, 213508 (2006)
    125. J. Kalinowski, M. Cocchi, D. Virgili, V. Fattori, and J. A. G. Williams, Adv. Mater., 19, 4000 (2007)
    126. H. Yang, Y. Shi, Y. Zhao, Y. Meng, W. Hu, J. Hou, S. Liu, Displays, 29, 327 (2008)
    127. G. Zhou, Q. Wang, C. L. Ho, W. Y. Wong, D. Ma, and L. Wang, Chem. Commun., 3574 (2009)
    128. C. H. Chang, K. C. Tien, C. C. Chen, M. S. Lin, H. C. Cheng, S. H. Liu, C. C. Wu, J. Y. Hung, Y. C. Chiu, Y. Chi, Organic Electronics, 11, 412 (2010)
    129. S. Janietz, D. D. C. Bradley, M. Grell, C. Giebeler, M. Inbasekaran and E. P. Woo, Applied Physics Letters 73 (17), 2453-2455 (1998)
    130. D. Nickerson, JOSA, 50, 1, 57 (1960)
    131. Commission Internationale de L’eclairage (CIE), Method of measuring and specifying colour rendering properties of light sources, Publication Report No. 13.3 (1995)
    132. S. J. Su, E. Gonmori, H. Sasabe and J. Kido, Adv. Mater., 20, 4189 (2008).
    133. N. Chopra, J. Lee, Y. Zheng, S. H. Eom, J. Xue and F. So, Appl. Phys. Lett., 93, 143307 (2008).
    134. M. K. Mathai, V. E. Choong, S. A. Choulis, B. Krummacher and F. So, Appl. Phys. Lett., 88, 243512 (2006).
    135. W. S. Huang, J. T. Lin, C. H. Cien, Y. T. Tao, S. S. Sun, Y. S. Wen, Chem. Mater., 16, 2480 (2004).
    136. M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, Z. H. Lu, Science, 332, 947 (2011).
    137. T. Chiba, Y. J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe and J. Kido, Org. Electron., 12, 710 (2011).
    138. J. H. Jou, M. F. Hsu, W. B. Wang, C. P. Liu, Z. C. Wong, J. J. Shyue and C. C. Chiang, Org. Electron. 9 (3), 291-295 (2008).
    139. B. Chen, C.-S. Lee, S.-T. Lee, P. Wedd, Y.-C. Chan, W. Gambling, H. Tain and W. Zhu, Jpn. J. Appl. Phys. Part 1. 2000, 39, 1190.
    140. J. P. Yang, Y. D. Jin, P. L. Heremans, R. Hoefnagels, P. Dieltiens, F. Blockhuys, H. J. Geise, M. Van der Auweraer, G. Borghs, Chem. Phys. Lett. 325, 251 (2000).
    141. C. W. Ko, Y. T.Tao. Appl. Phys. Lett.79, 25 (2001)
    142. C. H. Chuen, Y. T. Tao, Appl. Phys. Lett. 81, 24 (2002)
    143. V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I. Djurovich, B. W. D'Andrade, C. Adachi, S. R. Forrest, M. E. Thompson, New J. Chem. 26, 1171. (2002).
    144. J. H. Jou, Y. S. Chiu, R. Y. Wang, H. C. Hu, C. P. Wang, H. W. Lin, Org. Electronics. 7, 8 (2006).
    145. J. H. Jou, M. H. Wu, C. P. Wang, Y. S. Chiu, P. H. Chiang, H. C. Hu, R. Y. Wang, Org. Electronics. 8, 735 (2007).
    146. S. L. Lai, M. Y. Chan, M. K. Fung, C. S. Lee, S. T. Lee, Appl. Phys. Lett. 90, 203510 (2007).
    147. J. H. Jou, S. M. Shen, C. C. Chen, Y. C. Chung, C. J. Wang, M. F. Hsu, W. B. Wang, M. H. Wu, C. J. Yang, C . P. Liu, Organic Optoelectronics and Photonics III, 6999, S9992 (2008)
    148. Y. Yang, T. Peng, K. Ye, Y. Wu, Y. Liu, Y. Wang, Org. Electronics. 12, 29 (2011).
    149. B.W. D’Andrade, and S. R. Forrest, Adv. Mater., 16, 1585 (2004)
    150. (a) X. Yang, Z. Wang, S. Madakuni, J. Li, and G. E. Jabbour, Appl. Phys. Lett. 93, 193305 (2008);(b) M. Cocchi, J. Kalinowski, L. Murphy, J.A. G. Williams, V. Fattori, Org. Electron. 11, 388 (2010);(c) S. Seidel, R. Krause, A. Hunze, G. Schmid, F. Kozlowski, T. Dobbertin, and A. Winnacker, J. Appl. Phys. 104, 064505 (2008);(d) C. H. Chang, C. C. Chen, C. C. Wu, S. Y. Chang, J. Y. Hung, Y. Chi, Org. Electron. 11, 266 (2010);(e) Y. Sun, S. R. Forrest, J. Appl. Phys. 100, 073106 (2006);(f) H. Kanno, N. C. Giebink, Y. Sun, and S. R. Forrest, Appl. Phys. Lett. 89, 023503 (2006);(g) S. H. Eom, Y. Zheng, E. Wrzesniewski, J. Lee, N. Chopra, F. So, and J. Xue, Appl. Phys. Lett. 94, 153303 (2009);(h) G. Schwartz, S. Reineke, K. Walzer, and K. Leo, Appl. Phys. Lett. 92, 053311 (2008);(i) G. Schwartz, S. Reineke, T. C. Rosenow, K. Walzer, and K. Leo, Adv. Funct. Mater. 19, 1319 (2009);(j) H. Kannoa, Y. Sun, and S. R. Forrest, Appl. Phys. Lett. 89, 143516 (2006).
    151. J. H. Jou, S. M. Shen, C. R. Lin, Y. S. Wang, Y. C. Chou, and S. Z. Chen, Org. Electronics, 12, 865 (2011).


    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE