研究生: |
曾彤恩 Tseng, Tung-En |
---|---|
論文名稱: |
應用於溫度感測器之二階三角積分調變器 A Second-Order Delta-Sigma Modulator for CMOS Smart Temperature Sensor |
指導教授: |
朱大舜
Chu, Ta-Shun |
口試委員: |
王毓駒
Wang, Yu-Jiu 吳仁銘 Wu, Jen-Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 二階三角積分調變器 、溫度感測器 、超取樣 、雜訊轉移 、斬波器 |
外文關鍵詞: | Second-Order Delta-Sigma Modulator, Smart Temperature Sensor, Oversampling, noise shaping, chopper |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文描述一個應用於25 0C到1250C精準度為0.10C的溫度感測器上的二階三角積分調變器,透過TSMC 65製程實現電路,並且解析度達到有效位元14bit。首先,解釋SDM兩大特色:超取樣(Oversampling)和雜訊轉移(Noise Shaping),接著定義每個子電路規格,並且選擇使用CIFB架構讓STF在頻帶外有更好的濾波效果;考慮NTF最佳化、動態範圍縮放避免積分器輸出飽和、NTF極點皆在z-domain維持電路穩定,可以定義出整體SDM係數意即整個SDM的STF和NTF。
因為溫度變化頻率較低意即SDM輸入端為一個較低頻的訊號,所以調變器除了會受到熱雜訊影響還會看到很大的閃爍雜訊;再加上製成變異造成元件不匹配而在輸入端產生偏差電壓,此電壓可視為低頻雜訊;因此在兩級積分器上加入Chopper技術先把訊號移到高頻和低頻雜訊分離,再將訊號移到原本頻帶同時將低頻雜訊移到fc處,透過低通濾波器濾除高頻雜訊,此做法可以減少頻帶內偏差電壓以及低頻的閃爍雜訊1/f達到提升SNR的效果。
最後在供電電壓為1.2V、訊號頻寬為20KHz、超取樣率為256倍意即取樣頻率10M的情形下,所設計的二階調變器可以達到SNR為92.97 dB,相當於有效位元數15.1位元。
This thesis describes a second-order delta-sigma modulator with a 14 significant bits. It is applied to a smart temperature sensor that is accurate to within +0.10C over the temperature range of 25 0C to 125 0C, and to be implemented with TSMC 65 process.
The two major features of SDM, oversampling and noise shaping, will be introduced, and then the specifications of each sub-circuit will be defined. The CIFB architecture will be chosen to make the STF have a better filtering performance.
To consider the optimization of NTF and the using of dynamic range scaling to avoid the output of integrator saturated, all of the poles of NTF should be kept stable in the Z-domain. And then all of the coefficients will be defined, that means the STF, NTF of SDM will be defined.
Since the frequency of variation of temperature is low that means the input of SDM is a low frequency signal, the modulator will be impacted not only by the thermal noise also by the flicker noise, and the mismatch of process variation will caused the biasing voltage that could be considered as a low frequency noise at the input of SDM. As a result, by adding a chopper technique on the second-order modulator to transfer the signal to a higher frequency band that will separate the signal from the low frequency noise. and then transfer the signal back again to the original band and at the same time transfer the low frequency noise to the fc band, and use the low pass filter to filter the high frequency noise. The chopper can reduce the biasing voltage and the low-frequency flicker noise 1/f to get the higher SNR
.
In the situation of power supply voltage 1.2V, signal bandwidth 20 KHz,
the oversampling ratio is 256 that means sampling frequency is 10 MHz,
the designed modulator achieves 98.25 dB SNR which equals 16.03 significant valid bits.
[1] I. Ahmed, Pipelined ADC Design and Enhancement Techniques. Springer, 2010.
[2] Rocío Río Fernández, Fernando Medeiro Hidalgo, Belén Pérez Verdú, and José Manuel Rosa Utrera, CMOS Cascade Sigma-Delta Modulators for Sensors and Telecom. Springer, 2006.
[3] F. Gerfers, and M. Ortmanns, Continuous-Time Sigma-Delta A/D Conversion. Springer 2006.
[4] Oppenheim and Willsky, Signals and Systems. 2nd Edition, Prentice Hall, 1997.
[5] P. E. Allen, CMOS Analog Circuit Design. New York:Oxford,2002
[6] J. H. Fischer, “Noise sources and calculation techniques for switched capacitor filters,” IEEE J. Solid-State Circuits, vol. SSC-17, no. 4, pp. 742–752, Aug. 1982.
[7] K. Kundert, Simulating Switched-Capacitor Filters with SpectreRF. , 2006. [Online]. Available: http://www.designers-guide.org/analysis [8] R. Schreier, J. Silva, J. Steensgaard, and G. Temes, “Design-oriented estimation of thermal noise in switched-capacitor circuits,” IEEETrans. Circuits Syst. I: Reg.Papers, vol. 52, pp. 2358–2368, Nov. 2005.
[9] 吳介琮,資料轉換積體電路. 2014.
[10] C. Enz E. Vittoz F. Krummenacher "A CMOS chopper amplifier" IEEE J. Solid-State Circuit vol. 22 no. 3 pp. 335-342 1987.
[11] K. Hsieh and P. Gray, "A low-noise chopper-stabilized differential switched-capacitor filtering technique," 1981 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, New York, NY, USA, 1981, pp. 128-129.
[12] A.Yubawa, “A CMOS 8-bit High-Speed A/D Converter” IEEE J. of Solid-State Circuits, Vol 20, no. 3, pp. 775-779, June 1985.
[13] Yan Huang, H.Schleifer, and D.Killat, “Design and analysis of novel dynamic latched comparator with reduced kickback noise for high-speed ADCs” Circuit Theory and Design (ECCTD), Sept. 2013.
[14] L. Yao, M. Steyaert, and W. Sansen, “A 1-V 140- W 88-dB audio sigma-delta modulator in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1809 -1818, Nov. 2004.
[15]M. A. P. Pertijs, K. A. A. Makinwa and J. H. Huijsing, "A CMOS smart temperature sensor with a 3/spl sigma/ inaccuracy of /spl plusmn/0.1/spl deg/C from -55/spl deg/C to 125/spl deg/C," in IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, Dec. 2005.
[16]B.Razavi,Designed of analog CMOS Inregrated Circuit,McGraw-Hill,2003
[17]G.C.M. Meijer, Integrated Circuits and Components for Bandgap References and Temperature Transducers, PhD thesis, 1982.
[18] http://www.mathworks.com/matlabcentral/fileexchange/19-delta-sigma-toolbox
[19] W. H. Ki and G. C. Temes, ”Offset-compensated switched-capacitor integrators,”
Proc. IEEE Int. Symp. Circuits and Systems, pp.2829 -2832, May.1990.