研究生: |
陳威亦 Wei-Yi Chen |
---|---|
論文名稱: |
鍶鈦鋯系鈣鈦礦薄膜之電阻轉換特性研究 |
指導教授: |
吳振名
Jenn-Ming Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 182 |
中文關鍵詞: | 電阻轉換效應 、鈣鈦礦 、燈絲理論 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來由於電阻式記憶體(RRAM)具有優越的特性且元件簡單為金屬-絕緣體-金屬(MIM)。由於運作僅需搭配一個電晶體型成1T1R結構,所佔體積小因此足以作為下世代非揮發性記憶體應用。鈣鈦礦材料以發現可應用於RRAM,然而相關的電阻轉換機制仍未明朗,因此尋找相關電阻轉換效應機制為重要課題。
本論文分為兩部份,第一部份為鈦酸鍶材料利用磁控電將濺鍍法在不同溫度下鍍製於Pt/TiOx/SiO2/Si基板,並搭配Pt為上電極作成MIM結構元件。當偏壓小於2V時元件並不具有電阻轉換機制,其顯現的電滯效應,可能由於trap內部載子跟不上施加電場而產生鬆弛現象造成。偏壓大於2V時元件呈現bipolar特性,並搭配介電分析探討其電阻轉換機制為介面Schottky Barrier改變造成。施壓compilance使元件於高電流下產生soft breakdown,量測其unipolar特性,搭配介電分析以及time evolution量測,發現unipolar的電阻轉換效應依循燈絲理論。對相同元件而言unipolar之阻值比大於bipolar阻值比。
第二部份為鋯鈦酸鍶材料利用磁控電將濺鍍法在不同溫度下鍍製於Pt/TiOx/SiO2/Si基板,並搭配Pt為上電極作成MIM結構元件。元件並未具有bipolar特性,且電流傳導為bulk limit。高電流下施壓compilance元件產生soft breakdown,顯現出unipolar特性。當薄膜內部ZrO2雜相越少其絕緣性則越好,且高低電阻值比當高阻態絕緣性越好則越大。搭配介電分析以及time evolution量測,發現unipolar的電阻轉換效應依循燈絲理論。
比較白金、鈦酸鍶以及鋯鈦酸鍶三種材料unipolar高阻態之電阻率,白金為導體,鈦酸鍶可視為為半導體而鋯鈦酸鍶為絕緣體。絕緣性越好之材料其unipolar電阻值比越大。
參考文獻
[1] 市場分析公司BBC (Business Communications Co.) 2005年研究報告。
[2] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生, “先進記憶體簡介” ,國研科技創刊號,2004年。
[3] Sharp Develops Basic Technology for RRAM, Next-Generation Nonvolatile Memory.
[4] A. Asamitsu, Y. Tomioka, H. Kuwahara et al., "Current switching of resistive states in magnetoresistive manganites," Nature 388 (6637), 50-52 (1997).
[5] Y. Tokura and Y. Tomioka, "Colossal magnetoresistive manganites," J. Magn. Magn. Mater. 200 (1-3), 1-23 (1999).
[6] 客橋, “淺談新興非揮發性記憶體技術” ,台灣區電機電子工業同業公會,2006年。
[7] 奈米電子共同實驗室使用者聯盟,Bi-Monthly Newsletter,2004年。
[8] 劉志益,曾俊元,『電阻式非揮發性記憶體之近期發展,』電子月刊,vol. 117,pp.182-189,2005,中華民國期刊。
[9] 魏拯華, “次世代記憶體技術之分析與評估” ,奈米通訊。
[10] R. Sezi, A. Walter, R. Engl, A. Maltenberger, J. Schumann, M. Kund*, and C. Dehm,”Organic Materials for High-Density Non-Volatile Memory Applications”IEDM 03-261.
[11] A. Beck, J. G. Bednorz, C. Gerber et al., "Reproducible switching effect in thin oxide films for memory applications," Appl. Phys. Lett. 77 (1), 139-141 (2000).
[12] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nat. Mater. 6 (11), 833-840 (2007).
[13] C. Rohde, B. J. Choi, D. S. Jeong et al., "Identification of a determining parameter for resistive switching of TiO2 thin films," Appl. Phys. Lett. 86 (26), 3 (2005).
[14] J. W. Park, D. Y. Kim, and J. K. Lee, "Reproducible resistive switching in nonstoichiometric nickel oxide films grown by rf reactive sputtering for resistive random access memory applications," J. Vac. Sci. Technol. A 23 (5), 1309-1313 (2005).
[15] W. Y. Chang, Y. C. Lai, T. B. Wu et al., "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications," Appl. Phys. Lett. 92 (2), 3 (2008).
[16] A. Chen, S. Haddad, Y. C. Wu et al., "Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory," Appl. Phys. Lett. 92 (1), 3 (2008).
[17] C. Schindler, M. Weides, M. N. Kozicki et al., "Low current resistive switching in Cu-SiO2 cells," Appl. Phys. Lett. 92 (12), 3 (2008).
[18] Yet-Ming Chiang,Dunbar P.Birnie et al ,"Principle for Ceramic Science and Engineering," John Wiley & Sons,Inc
[19] S. Q. Liu, N. J. Wu, and A. Ignatiev, "Electric-pulse-induced reversible resistance change effect in magnetoresistive films," Appl. Phys. Lett. 76 (19), 2749-2751 (2000).
[20] Y. Watanabe, J. G. Bednorz, A. Bietsch et al., "Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals," Appl. Phys. Lett. 78 (23), 3738-3740 (2001).
[21] C. Y. Liu, P. H. Wu, A. Wang et al., "Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film," IEEE Electron Device Lett. 26 (6), 351-353 (2005).
[22] C. Y. Lin, C. C. Lin, C. H. Huang et al., "Resistive switching properties of sol-gel derived Mo-doped SrZrO3 thin films," Surf. Coat. Technol. 202 (4-7), 1319-1322 (2007).
[23] C. C. Lin, J. S. Yu, C. Y. Lin et al., "Stable resistive switching behaviors of sputter deposited V-doped SrZrO3 thin films," Thin Solid Films 516 (2-4), 402-406 (2007).
[24] D. J. Seong, M. Jo, D. Lee et al., "HPHA effect on reversible resistive switching of Pt/Nb-doped SrTiO3 Schottky junction for nonvolatile memory application," Electrochem. Solid State Lett. 10 (6), H168-H170 (2007).
[25] B. P. Andreasson, M. Janousch, U. Staub et al., "Resistive switching in Cr-doped SrTiO3: An X-ray absorption spectroscopy study," Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 144 (1-3), 60-63 (2007).
[26] S. F. Alvarado, F. La Mattina, and J. G. Bednorz, "Electroluminescence in SrTiO3 : Cr single-crystal nonvolatile memory cells," Appl. Phys. A-Mater. Sci. Process. 89 (1), 85-89 (2007).
[27] D. H. Choi, D. Lee, H. Sim et al., "Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications," Appl. Phys. Lett. 88 (8), 3 (2006).
[28] K. Szot, W. Speier, G. Bihlmayer et al., "Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3," Nat. Mater. 5 (4), 312-320 (2006).
[29] M. Colle, M. Buchel, and D. M. de Leeuw, "Switching and filamentary conduction in non-volatile organic memories," Org. Electron. 7 (5), 305-312 (2006).
[30] C. C. Lin, B. C. Tu, C. H. Lin et al., "Resistive switching mechanisms of V-doped SrZrO3 memory films," IEEE Electron Device Lett. 27 (9), 725-727 (2006).
[31] A. Sawa, T. Fujii, M. Kawasaki et al., "Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface," Appl. Phys. Lett. 85 (18), 4073-4075 (2004).
[32] T. Fujii, M. Kawasaki, A. Sawa et al., "Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3," Appl. Phys. Lett. 86 (1), 3 (2005).
[33] S. Seo, M. J. Lee, D. C. Kim et al., "Electrode dependence of resistance switching in polycrystalline NiO films," Appl. Phys. Lett. 87 (26), 3 (2005).
[34] R. Fors, S. I. Khartsev, and A. M. Grishin, "Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition," Phys. Rev. B 71 (4), 10 (2005).
[35] S. Karg, G. I. Meijer, D. Widmer et al., "Electrical-stress-induced conductivity increase in SrTiO3 films," Appl. Phys. Lett. 89 (7), 3 (2006).
[36] J. R. Contreras, H. Kohlstedt, U. Poppe et al., "Resistive switching in metal-ferroelectric-metal junctions," Appl. Phys. Lett. 83 (22), 4595-4597 (2003).
[37] M. C. Ni, S. M. Guo, H. F. Tian et al., "Resistive switching effect in SrTiO3-delta/Nb-doped SrTiO3 heterojunction," Appl. Phys. Lett. 91 (18), 3 (2007).
[38] Nalwa H.S., "Ferroelectric and Dielectric Thin Films," Academic Press
[39] D. S. Jeong, H. Schroeder, and R. Waser, "Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack," Electrochem. Solid State Lett. 10 (8), G51-G53 (2007).
[40] Y. Watanabe, "Electrical transport through Pb(Zr,Ti)O3 p-n and p-p heterostructures modulated by bound charges at a ferroelectric surface: Ferroelectric p-n diode," Phys. Rev. B 59 (17), 11257-11266 (1999).
[41] G. W. Dietz, W. Antpohler, M. Klee et al., "Electrode influence on the charge-transport through SrTiO3 thin-films," J. Appl. Phys. 78 (10), 6113-6121 (1995).
[42] R. Thomas, D. C. Dube, M. N. Kamalasanan et al., "Electrical properties of sol-gel processed amorphous BaTiO3 thin films," J. Sol-Gel Sci. Technol. 16 (1-2), 101-107 (1999).
[43] Ben G.Streetman,Sanjay Banerjee., Solid State Electronic Devices,"Prentice Hall International,Inc
[44] S. M. Sze and D. J. Coleman, "Current transport in metal-semiconductor-metal (MSM) structures," S&d-Stare EIecfronics 14, 10 (1971).
[45] T. K. Y. Wong, B. J. Kennedy, C. J. Howard et al., "Crystal structures and phase transitions in the SrTiO3-SrZrO3 solid solution," J. Solid State Chem. 156 (2), 255-263 (2001).
[46] R. V. Shende, D. S. Krueger, and S. J. Lombardo, "Solid state synthesis, processing, and electrical properties of Sr(TixZr1-x)O3 (0 <= x <= 1) ceramics for high voltage applications," J. Ceram. Process. Res. 4 (4), 191-196 (2003).
[47] T. Harigai, D. Tanaka, S. M. Nam et al., "Preparation and dielectric properties of SrZrO3/SrTiO3 superlattices," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 43 (9B), 6530-6534 (2004).
[48] J. Bera and S. K. Rout, "SrTiO3-SrZrO3 solid solution: Phase formation kinetics and mechanism through solid-oxide reaction," Mater. Res. Bull. 40 (7), 1187-1193 (2005).