簡易檢索 / 詳目顯示

研究生: 陳威亦
Wei-Yi Chen
論文名稱: 鍶鈦鋯系鈣鈦礦薄膜之電阻轉換特性研究
指導教授: 吳振名
Jenn-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 182
中文關鍵詞: 電阻轉換效應鈣鈦礦燈絲理論
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於電阻式記憶體(RRAM)具有優越的特性且元件簡單為金屬-絕緣體-金屬(MIM)。由於運作僅需搭配一個電晶體型成1T1R結構,所佔體積小因此足以作為下世代非揮發性記憶體應用。鈣鈦礦材料以發現可應用於RRAM,然而相關的電阻轉換機制仍未明朗,因此尋找相關電阻轉換效應機制為重要課題。
    本論文分為兩部份,第一部份為鈦酸鍶材料利用磁控電將濺鍍法在不同溫度下鍍製於Pt/TiOx/SiO2/Si基板,並搭配Pt為上電極作成MIM結構元件。當偏壓小於2V時元件並不具有電阻轉換機制,其顯現的電滯效應,可能由於trap內部載子跟不上施加電場而產生鬆弛現象造成。偏壓大於2V時元件呈現bipolar特性,並搭配介電分析探討其電阻轉換機制為介面Schottky Barrier改變造成。施壓compilance使元件於高電流下產生soft breakdown,量測其unipolar特性,搭配介電分析以及time evolution量測,發現unipolar的電阻轉換效應依循燈絲理論。對相同元件而言unipolar之阻值比大於bipolar阻值比。
    第二部份為鋯鈦酸鍶材料利用磁控電將濺鍍法在不同溫度下鍍製於Pt/TiOx/SiO2/Si基板,並搭配Pt為上電極作成MIM結構元件。元件並未具有bipolar特性,且電流傳導為bulk limit。高電流下施壓compilance元件產生soft breakdown,顯現出unipolar特性。當薄膜內部ZrO2雜相越少其絕緣性則越好,且高低電阻值比當高阻態絕緣性越好則越大。搭配介電分析以及time evolution量測,發現unipolar的電阻轉換效應依循燈絲理論。
    比較白金、鈦酸鍶以及鋯鈦酸鍶三種材料unipolar高阻態之電阻率,白金為導體,鈦酸鍶可視為為半導體而鋯鈦酸鍶為絕緣體。絕緣性越好之材料其unipolar電阻值比越大。


    目錄 摘要..............................................................................................................................Ⅰ 目錄..............................................................................................................................Ⅲ 圖目錄..........................................................................................................................Ⅵ 第一章 導論.................................................................................................................1 1-1 記憶體發展..........................................................................................................2 1-2 研究動機..............................................................................................................3 第二章 文獻回顧.........................................................................................................5 2-1 先進非揮發性記憶體簡介..................................................................................5 2-1-1 鐵電記憶體(FeRAM).......................................................................................5 2-1-2 相變化記憶體(OUM).......................................................................................6 2-1-3 磁阻記憶體(MRAM)........................................................................................6 2-1-4 電阻式記憶體(RRAM) ....................................................................................7 2-2 電阻轉換效應.......................................................................................................8 2-2-1 EPIR特性...........................................................................................................8 2-2-2 Compilance意義................................................................................................8 2-2-3 Unipolar特性.....................................................................................................9 2-2-4 Bipolar特性.......................................................................................................9 2-3 RRAM材料..........................................................................................................9 2-3-1 過渡金屬單元氧化物.....................................................................................10 2-3-2 多元金屬氧化物.............................................................................................12 2-3-3 有機化合物.....................................................................................................15 2-4 電阻轉換機制.....................................................................................................16 2-4-1 Filamentary Theory.........................................................................................16 2-4-2 Modified Schottky Barrier Model...................................................................18 2-4-3 Insulator-Metal Transition...............................................................................20 2-4-4 Polarization reversal of a ferroelectric barrier.................................................20 2-4-5 Charge-Trap Model..........................................................................................21 2-5 漏電機制.............................................................................................................21 2-5-1 Barrier-limit漏電機制........................................................................................22 2-5-2 Bulk-limit漏電機制...........................................................................................23 第三章 實驗方法........................................................................................................26 3-1 薄膜製備.............................................................................................................26 3-1-1 基板製備.........................................................................................................26 3-1-2 靶材製備.........................................................................................................26 3-1-2-1 靶材Sr0.9TiO3-δ製作....................................................................................26 3-1-2-2 靶材Sr0.9(Ti,Zr)O3-δ製作.............................................................................27 3-1-2 絕緣層鍍製.....................................................................................................28 3-1-3 上電極鍍製.....................................................................................................29 3-2 薄膜材料特性分析.............................................................................................30 3-2-1 晶體結構分析.................................................................................................30 3-2-2 掃描式電子顯微鏡(SEM) .............................................................................30 3-2-3 原子力顯微鏡(AFM) .....................................................................................31 3-2-4 光電子分析(XPS) ..........................................................................................31 3-3 電性分析.............................................................................................................31 3-3-1 電壓-電流(I-V)量測........................................................................................31 3-3-2 Time Evolution量測........................................................................................31 3-3-3 介電特性對偏壓分析.....................................................................................32 3-3-4 介電特性對頻率分析.....................................................................................32 第四章 鈦酸鍶實驗結果討論..................................................................................33 4-1 材料結構分析.....................................................................................................34 4-1-1 低略角X-ray繞射分析(GIXD) .....................................................................34 4-1-2 SEM分析.........................................................................................................34 4-1-3 AFM分析........................................................................................................35 4-2 Bipolar電性探討................................................................................................36 4-2-1電流-電壓(I-V)特性量测...................................................................................36 4-2-1-1 Bipolar I-V特性量測...................................................................................36 4-2-2-2 改變delay time之I-V特性量测.................................................................38 4-2-2 介電特性對電壓關係量测.............................................................................40 4-2-3 介電特性對頻率量測.....................................................................................42 4-2-4 Bipolar電阻轉換機制探討.............................................................................44 4-2-4-1 Back-to-Back Schottky Barrier....................................................................44 4-2-4-2 Bipolar電阻轉換機制...............................................................................46 4-3 Unipolar電性探討.............................................................................................48 4-3-1 電流-電壓(I-V)量测........................................................................................49 4-3-2 介電特性對電壓關係量测.............................................................................50 4-3-3 介電特性對頻率量測.....................................................................................51 4-3-4 Time Evolution量测........................................................................................52 4-3-5 漏電流曲線分析.............................................................................................53 4-4 化學分析.............................................................................................................54 4-5 Bipolar→Unipolar 轉換....................................................................................55 4-6 結論.....................................................................................................................57 第五章 鋯鈦酸鍶實驗結果討論..............................................................................59 5-1 材料結構分析.....................................................................................................60 5-1-1 X光繞射分析(XRD) ......................................................................................60 5-1-2 SEM分析.........................................................................................................60 5-1-3 AFM分析........................................................................................................61 5-2 Bipolar電性探討.................................................................................................61 5-2-2電流-電壓(I-V)特性量测...................................................................................61 5-2-2-1 Bipolar I-V特性量測...................................................................................61 5-2-2-2 改變delay time之I-V特性量测....................................................................62 5-2-2 介電特性對電壓關係量测...............................................................................63 5-2-3 介電特性對頻率量測.....................................................................................65 5-3 Unipolar電性探討............................................................................................66 5-3-1 電流-電壓(I-V)量测........................................................................................66 5-3-2 介電特性對電壓關係量测.............................................................................67 5-3-3 介電特性對頻率量測.....................................................................................68 5-3-4 Time Evolution量测........................................................................................69 5-3-5 絕緣體→導體轉換...........................................................................................70 5-3-6 漏電流曲線分析.............................................................................................76 5-4 化學分析.............................................................................................................72 5-5 不同材料之電阻轉換特性比較.........................................................................73 5-6 結論.....................................................................................................................74 第六章 結論..............................................................................................................76 參考文獻....................................................................................................................177 圖目錄 圖2-1 鐵電材料兩極化方向....................................................................................79 圖2-2 相變化記憶體結構圖....................................................................................79 圖2-3 磁阻式記憶體結構圖....................................................................................79 圖2-4 電阻式記憶體(a)1D1R結構..........................................................................80 圖2-4 電阻式記憶體(b)1T1R結構..........................................................................80 圖2-5 施加不同偏壓脈衝之EPIR特性..................................................................80 圖2-6 電阻轉換效應(a) unipolar特性.....................................................................80 圖2-6 電阻轉換效應(b) bipolar特性.......................................................................80 圖2-7 TiO2電阻轉換效應特性(a)設定不同compilance.........................................81 圖2-7 TiO2電阻轉換效應特性(b)功率和能量對電阻轉換效應影響...................81 圖2-8 NiO藉由設定不同compilance之unipolar圖...............................................81 圖2-9 (a)ZnO之unipolar特性圖.............................................................................82 圖2-9 (b)高低阻態電流fitting圖.............................................................................82 圖2-10 (a)Cu2O 1T1R元件圖及其電阻轉換效應圖..............................................82 圖2-10 (b)不同脈衝寬度對Vg影響........................................................................82 圖2-11 鈣鈦礦晶體結構圖......................................................................................83 圖2-12 PCMO的EPIR特性.....................................................................................83 圖2-13 0.2%Cr:SZO bioplar特性圖........................................................................83 圖2-14 0.2%Cr:STO bipolar電滯特性圖bipolar.....................................................84 圖2-15 SZO摻雜不同比例V之bipolar特性圖......................................................84 圖2-16 經由HPHA改善電阻轉換效應圖..............................................................85 圖2-17 未摻雜元素之STO unipolar特性圖...........................................................85 圖2-18 利用OM於單晶STO觀察燈絲路徑圖......................................................85 圖2-19 施加不同偏壓於polyspirofluorene做成之電阻器,其寫入、讀取以及抹 除特性..........................................................................................................86 圖2-20 燈絲理論模型..............................................................................................86 圖2-21 Schottky Barrier Model模型圖....................................................................87 圖2-22 Schottky Barrier於C-V圖中峰值位移情形...............................................87 圖2-23 (a)電壓全部貢獻在Schottky barrier之電阻轉換I-V特性........................87 圖2-23 (b)部分電壓貢獻於Schottky barrier之電阻轉換I-V特性......................87 圖2-24 (a)300K STO/STON I-V特性圖..................................................................88 圖2-24 (b)180K STO/STON I-V特性圖..................................................................88 圖2-24 (c) STO/STON C-V特性圖.........................................................................88 圖2-24 (d) STO/STON 介電掃頻量測特性圖.......................................................88 圖2-25 Schottky Emission 能帶示意圖..................................................................89 圖2-26 (a)direct tunneling能帶示意圖....................................................................89 圖2-26 (b)F-N tunneling能帶示意圖......................................................................89 圖2-27 SCLC各區域斜率圖....................................................................................90 圖2-28 Poole-Frenkel emission能帶示意圖............................................................90 圖3-1 基板結構圖....................................................................................................91 圖3-2 燒結溫度示意圖............................................................................................91 圖3-3 靶材Sr0.9TiO3-δ製作流程圖...........................................................................92 圖3-4 靶材Sr0.9(Ti,Zr)O3-δ製作流程圖...................................................................93 圖3-5 (a)SrTiO3粉末XRD繞射圖...........................................................................94 圖3-5 (b) SrZrO3及SrTiO3混合粉末XRD繞射.....................................................94 圖3-6 delay time及hold time示意圖.......................................................................95 圖4-1 調整compilance大小產生bipolar及unipolar特性轉換(a)bipolar特性圖..96 圖4-1 調整compilance大小產生bipolar及unipolar特性轉換(b)uniipolar特性 圖....................................................................................................................96 圖4-2 Forming前後unipolar以及bipolar特性示意圖...........................................96 圗4-3 SrTiO3低略角繞射分析圖.............................................................................97 圗4-4 各溫度下SrTiO3 SEM平面圖(a)鍍製溫度550℃........................................98 圗4-4 各溫度下SrTiO3 SEM平面圖(b)鍍製溫度500℃........................................98 圗4-4 各溫度下SrTiO3 SEM平面圖(c)鍍製溫度450℃........................................98 圗4-4 各溫度下SrTiO3 SEM平面圖(d)鍍製溫度R.T............................................98 圗4-5 各溫度下SrTiO3 AFM平面圖(a)鍍製溫度550℃........................................99 圗4-5 各溫度下SrTiO3 AFM平面圖(b)鍍製溫度500℃.......................................99 圗4-5 各溫度下SrTiO3 AFM平面圖(c)鍍製溫度450℃......................................100 圗4-5 各溫度下SrTiO3 AFM平面圖(d)鍍製溫度R.T.........................................100 圗4-6 (a)450 ℃bipolar特性圖(linear scale) .........................................................101 圗4-6 (b)450 ℃bipolar特性圖(log scale) .............................................................102 圗4-7 (a)500 ℃bipolar特性圖(linear scale) .........................................................103 圗4-7 (b)500 ℃bipolar特性圖(log scale) .............................................................105 圗4-8 (a)550 ℃bipolar特性圖(linear scale) .........................................................107 圗4-8 (b)550 ℃bipolar特性圖(log scale) .............................................................109 圗4-9 (a)RT電滯特性圖(linear scale) ...................................................................111 圗4-9 (b) RT電滯特性圖(log scale) .....................................................................112 圗4-10 鍍製溫度500℃STO改變不同delay time之I-V圖(linear scale) ............113 圗4-11 Pt之I-V圖(linear scale) ............................................................................113 圗4-12 (a) 450℃經由各∣Vdc∣量測後1kHz下之C-V圖..................................114 圗4-12 (b) 450℃經由各∣Vdc∣量測後10kHz下之C-V圖................................115 圗4-12 (c) 450℃經由各∣Vdc∣量測後1MHz下之C-V圖................................116 圗4-13 (a) 500℃經由各∣Vdc∣量測後1kHz下之C-V圖..................................117 圗4-13 (b) 500℃經由各∣Vdc∣量測後10kHz下之C-V圖................................118 圗4-13 (c) 500℃經由各∣Vdc∣量測後1MHz下之C-V圖................................119 圗4-14 (a) 550℃經由各∣Vdc∣量測後1kHz下之C-V圖..................................120 圗4-14 (b) 550℃經由各∣Vdc∣量測後10kHz下之C-V圖...............................121 圗4-14 (c) 550℃經由各∣Vdc∣量測後1MHz下之C-V圖................................122 圗4-15 500℃經由12V-2特性量測後之電感(L)-V圖.........................................123 圗4-16 550℃經由6V-2特性量測後之電感(L)-V圖...........................................123 圗4-17 RT經由各∣Vdc∣量測後之C-V圖(a)1kHz............................................124 圗4-17 RT經由各∣Vdc∣量測後之C-V圖(b)10kHz..........................................124 圗4-17 RT經由各∣Vdc∣量測後之C-V圖(c)1MHz...........................................124 圗4-18 450℃各∣Vdc∣量測後之掃頻量測圖.....................................................125 圗4-19 500℃各∣Vdc∣量測後之掃頻量測圖.....................................................126 圗4-20 550℃各∣Vdc∣量測後之掃頻量測圖.....................................................127 圗4-21 500℃12V-2量測後之掃頻量測圖............................................................128 圗4-22 550℃6V-2量測後之掃頻量測圖..............................................................128 圗4-23 RT各∣Vdc∣量測後之掃頻量測圖.........................................................129 圖4-24 Junction capacitance(Cj)、diffusion capacitance(Cs)以及Ctotal對偏壓關係 圖................................................................................................................129 圖4-25 Back-to-Back Schottky barrier能帶及C-V圖...........................................130 圖4-26 P-N二極體介面能帶受介面電荷影響關係圖(a)介面電荷=0................131 圖4-26 P-N二極體介面能帶受介面電荷影響關係圖(b)介面電荷>0..............131 圖4-26 P-N二極體介面能帶受介面電荷影響關係圖(c)介面電荷< 0...............131 圖4-27 改變不同delay time之bipolar特性圖......................................................132 圖4-28 分別以上下電極接地之bipolar特性圖....................................................132 圗4-29 500 ℃unipolar特性圖(a)linear scale.........................................................133 圗4-29 500 ℃unipolar特性圖(b)linear scale.........................................................133 圗4-30 550 ℃unipolar特性圖(a)linear scale.........................................................134 圗4-30 550 ℃unipolar特性圖(b)linear scale.........................................................134 圗4-31 500℃低阻態之電感(L)-V圖....................................................................135 圗4-32 550℃低阻態之電感(L)-V圖....................................................................135 圗4-33 500℃高阻態之C-V圖..............................................................................136 圗4-34 550℃高阻態之C-V圖..............................................................................136 圗4-35 500℃低阻態之掃頻量測圖......................................................................137 圗4-36 550℃低阻態之掃頻量測圖......................................................................137 圗4-37 500℃高阻態之掃頻量測圖......................................................................138 圗4-38 550℃高阻態之掃頻量測圖......................................................................138 圗4-39 (a) 500℃高阻態之time evolution圖........................................................139 圗4-39 (b) 550℃高阻態經time evolution變為低阻態之I-V圖..........................139 圗4-40 (a) 500℃低阻態之time evolution圖........................................................140 圗4-40 (b) 500℃低阻態經time evolution變為高阻態之I-V圖..........................140 圗4-41 (a) 550℃高阻態之time evolution圖........................................................141 圗4-41 (b) 550℃高阻態經time evolution變為低阻態之I-V圖..........................141 圗4-42 (a) 550℃低阻態之time evolution圖........................................................142 圗4-42 (b) 550℃低阻態經time evolution變為高阻態之I-V圖..........................142 圗4-43 (a)500℃LRS之curve fiting圖..................................................................143 圗4-43 (b)500℃HRS之curve fiting圖..................................................................143 圗4-44 (a)550℃LRS之curve fiting圖..................................................................144 圗4-44 (b)550℃HRS之curve fiting圖..................................................................144 圖4-45 (a) O的XPS圖...........................................................................................145 圖4-45 (b) Ti的XPS圖..........................................................................................145 圖4-45 (c) Sr的XPS圖..........................................................................................145 圖4-46 各偏壓下之阻抗分析圖............................................................................146 圖5-1 Sr(Tix,Zr1-x)O3X-ray繞射分析圖.................................................................147 圗5-2 各溫度下Sr(Ti,Zr)O3SEM平面圖(a)鍍製溫度550℃...............................148 圗5-2 各溫度下Sr(Ti,Zr)O3 SEM平面圖(b)鍍製溫度500℃..............................148 圗5-2 各溫度下Sr(Ti,Zr)O3 SEM平面圖(c)鍍製溫度450℃..............................148 圗5-3 各溫度下Sr(Ti,Zr)O3AFM平面圖(a)鍍製溫度550℃...............................149 圗5-3 各溫度下Sr(Ti,Zr)O3AFM平面圖(b)鍍製溫度500℃...............................149 圗5-3 各溫度下Sr(Ti,Zr)O3AFM平面圖(c)鍍製溫度450℃...............................149 圖5-4 450℃之電滯曲線圖(a)linear scale..............................................................150 圖5-4 450℃之電滯曲線圖(b)log scale.................................................................150 圖5-5 (a)500℃之電滯曲線圖linear scale.............................................................151 圖5-5 (b)500℃之電滯曲線圖log scale.................................................................152 圖5-6 (a)550℃之電滯曲線圖linear scale.............................................................153 圖5-6 (b)550℃之電滯曲線圖log scale.................................................................154 圗5-7 鍍製溫度500℃STZ薄膜改變不同delay time之I-V圖(linear scale) ......155 圗5-8 (a) 450℃經由各∣Vdc∣量測後1kHz下之C-V圖..................................156 圗5-8 (b) 450℃經由各∣Vdc∣量測後10kHz下之C-V圖................................156 圗5-8 (c) 450℃經由各∣Vdc∣量測後1MHz下之C-V圖................................156 圗5-9 (a) 500℃經由各∣Vdc∣量測後1kHz下之C-V圖..................................157 圗5-9 (b) 500℃經由各∣Vdc∣量測後10kHz下之C-V圖................................157 圗5-9 (c) 500℃經由各∣Vdc∣量測後1MHz下之C-V圖................................157 圗5-10 (a) 550℃經由各∣Vdc∣量測後1kHz下之C-V圖..................................158 圗5-10 (b) 550℃經由各∣Vdc∣量測後10kHz下之C-V圖...............................158 圗5-10 (c) 550℃經由各∣Vdc∣量測後1MHz下之C-V圖................................158 圗5-11 450℃經由6V量測後之電感(L)-V圖.......................................................159 圗5-12 500℃經由21V量測後之電感(L)-V圖....................................................159 圗5-13 550℃經由14V量測後之電感(L)-V圖....................................................159 圗5-14 450℃各∣Vdc∣量測後之掃頻量測圖.....................................................160 圗5-15 500℃各∣Vdc∣量測後之掃頻量測圖.....................................................160 圗5-15 550℃各∣Vdc∣量測後之掃頻量測圖.....................................................160 圗5-17 450℃6V量測後之掃頻量測圖.................................................................161 圗5-18 550℃21V量測後之掃頻量測圖...............................................................161 圗5-19 550℃14V量測後之掃頻量測圖...............................................................161 圗5-20 450 ℃unipolar特性圖(a)linear scale.........................................................162 圗5-20 450 ℃unipolar特性圖(b)log scale.............................................................162 圗5-21 500 ℃unipolar特性圖(a)linear scale.........................................................163 圗5-21 500 ℃unipolar特性圖(b)log scale.............................................................163 圗5-22 550 ℃unipolar特性圖(a)linear scale.........................................................164 圗5-22 550 ℃unipolar特性圖(b)log scale.............................................................164 圗5-23 450℃低阻態之電感(L)-V圖....................................................................165 圗5-24 500℃低阻態之電感(L)-V圖....................................................................165 圗5-25 550℃低阻態之電感(L)-V圖....................................................................165 圗5-26 450℃高阻態之C-V圖..............................................................................166 圗5-27 500℃高阻態之C-V圖..............................................................................166 圗5-28 550℃高阻態之C-V圖..............................................................................166 圗5-29 450℃低阻態之掃頻量測圖......................................................................167 圗5-30 500℃低阻態之掃頻量測圖......................................................................167 圗5-31 550℃低阻態之掃頻量測圖......................................................................167 圗5-32 450℃高阻態之掃頻量測圖......................................................................168 圗5-33 500℃高阻態之掃頻量測圖......................................................................168 圗5-34 550℃高阻態之掃頻量測圖......................................................................168 圗5-35 (a) 450℃高阻態之time evolution圖........................................................169圗5-35 (b) 450℃高阻態經time evolution變為低阻態之I-V圖..........................169 圗5-36 (a) 450℃低阻態之time evolution圖........................................................170圗5-36 (b) 450℃低阻態經time evolution變為高阻態之I-V圖..........................170 圗5-37 (a) 500℃高阻態之time evolution圖........................................................171圗5-37 (b) 500℃高阻態經time evolution變為低阻態之I-V圖..........................171 圗5-38 (a) 500℃低阻態之time evolution圖........................................................172圗5-38 (b) 500℃低阻態經time evolution變為高阻態之I-V圖..........................172 圗5-39 (a) 550℃高阻態之time evolution圖........................................................173圗5-39 (b)550℃高阻態經time evolution變為低阻態之I-V圖...........................173 圗5-40 (a) 550℃低阻態之time evolution圖........................................................174圗5-40 (b) 550℃低阻態經time evolution變為高阻態之I-V圖..........................174 圖5-41 (a)500℃LRS之curve fiting圖..................................................................175圖5-41 (b)500℃HRS之curve fiting圖..................................................................175 圖5-41 Pt、STO以及STZ三種材料之unipolar特性比較....................................176

    參考文獻
    [1] 市場分析公司BBC (Business Communications Co.) 2005年研究報告。
    [2] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生, “先進記憶體簡介” ,國研科技創刊號,2004年。
    [3] Sharp Develops Basic Technology for RRAM, Next-Generation Nonvolatile Memory.
    [4] A. Asamitsu, Y. Tomioka, H. Kuwahara et al., "Current switching of resistive states in magnetoresistive manganites," Nature 388 (6637), 50-52 (1997).
    [5] Y. Tokura and Y. Tomioka, "Colossal magnetoresistive manganites," J. Magn. Magn. Mater. 200 (1-3), 1-23 (1999).
    [6] 客橋, “淺談新興非揮發性記憶體技術” ,台灣區電機電子工業同業公會,2006年。
    [7] 奈米電子共同實驗室使用者聯盟,Bi-Monthly Newsletter,2004年。
    [8] 劉志益,曾俊元,『電阻式非揮發性記憶體之近期發展,』電子月刊,vol. 117,pp.182-189,2005,中華民國期刊。
    [9] 魏拯華, “次世代記憶體技術之分析與評估” ,奈米通訊。
    [10] R. Sezi, A. Walter, R. Engl, A. Maltenberger, J. Schumann, M. Kund*, and C. Dehm,”Organic Materials for High-Density Non-Volatile Memory Applications”IEDM 03-261.

    [11] A. Beck, J. G. Bednorz, C. Gerber et al., "Reproducible switching effect in thin oxide films for memory applications," Appl. Phys. Lett. 77 (1), 139-141 (2000).
    [12] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nat. Mater. 6 (11), 833-840 (2007).
    [13] C. Rohde, B. J. Choi, D. S. Jeong et al., "Identification of a determining parameter for resistive switching of TiO2 thin films," Appl. Phys. Lett. 86 (26), 3 (2005).
    [14] J. W. Park, D. Y. Kim, and J. K. Lee, "Reproducible resistive switching in nonstoichiometric nickel oxide films grown by rf reactive sputtering for resistive random access memory applications," J. Vac. Sci. Technol. A 23 (5), 1309-1313 (2005).
    [15] W. Y. Chang, Y. C. Lai, T. B. Wu et al., "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications," Appl. Phys. Lett. 92 (2), 3 (2008).
    [16] A. Chen, S. Haddad, Y. C. Wu et al., "Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory," Appl. Phys. Lett. 92 (1), 3 (2008).
    [17] C. Schindler, M. Weides, M. N. Kozicki et al., "Low current resistive switching in Cu-SiO2 cells," Appl. Phys. Lett. 92 (12), 3 (2008).
    [18] Yet-Ming Chiang,Dunbar P.Birnie et al ,"Principle for Ceramic Science and Engineering," John Wiley & Sons,Inc
    [19] S. Q. Liu, N. J. Wu, and A. Ignatiev, "Electric-pulse-induced reversible resistance change effect in magnetoresistive films," Appl. Phys. Lett. 76 (19), 2749-2751 (2000).
    [20] Y. Watanabe, J. G. Bednorz, A. Bietsch et al., "Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals," Appl. Phys. Lett. 78 (23), 3738-3740 (2001).
    [21] C. Y. Liu, P. H. Wu, A. Wang et al., "Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film," IEEE Electron Device Lett. 26 (6), 351-353 (2005).
    [22] C. Y. Lin, C. C. Lin, C. H. Huang et al., "Resistive switching properties of sol-gel derived Mo-doped SrZrO3 thin films," Surf. Coat. Technol. 202 (4-7), 1319-1322 (2007).
    [23] C. C. Lin, J. S. Yu, C. Y. Lin et al., "Stable resistive switching behaviors of sputter deposited V-doped SrZrO3 thin films," Thin Solid Films 516 (2-4), 402-406 (2007).
    [24] D. J. Seong, M. Jo, D. Lee et al., "HPHA effect on reversible resistive switching of Pt/Nb-doped SrTiO3 Schottky junction for nonvolatile memory application," Electrochem. Solid State Lett. 10 (6), H168-H170 (2007).
    [25] B. P. Andreasson, M. Janousch, U. Staub et al., "Resistive switching in Cr-doped SrTiO3: An X-ray absorption spectroscopy study," Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 144 (1-3), 60-63 (2007).
    [26] S. F. Alvarado, F. La Mattina, and J. G. Bednorz, "Electroluminescence in SrTiO3 : Cr single-crystal nonvolatile memory cells," Appl. Phys. A-Mater. Sci. Process. 89 (1), 85-89 (2007).
    [27] D. H. Choi, D. Lee, H. Sim et al., "Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications," Appl. Phys. Lett. 88 (8), 3 (2006).

    [28] K. Szot, W. Speier, G. Bihlmayer et al., "Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3," Nat. Mater. 5 (4), 312-320 (2006).
    [29] M. Colle, M. Buchel, and D. M. de Leeuw, "Switching and filamentary conduction in non-volatile organic memories," Org. Electron. 7 (5), 305-312 (2006).
    [30] C. C. Lin, B. C. Tu, C. H. Lin et al., "Resistive switching mechanisms of V-doped SrZrO3 memory films," IEEE Electron Device Lett. 27 (9), 725-727 (2006).
    [31] A. Sawa, T. Fujii, M. Kawasaki et al., "Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface," Appl. Phys. Lett. 85 (18), 4073-4075 (2004).
    [32] T. Fujii, M. Kawasaki, A. Sawa et al., "Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3," Appl. Phys. Lett. 86 (1), 3 (2005).
    [33] S. Seo, M. J. Lee, D. C. Kim et al., "Electrode dependence of resistance switching in polycrystalline NiO films," Appl. Phys. Lett. 87 (26), 3 (2005).
    [34] R. Fors, S. I. Khartsev, and A. M. Grishin, "Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition," Phys. Rev. B 71 (4), 10 (2005).
    [35] S. Karg, G. I. Meijer, D. Widmer et al., "Electrical-stress-induced conductivity increase in SrTiO3 films," Appl. Phys. Lett. 89 (7), 3 (2006).
    [36] J. R. Contreras, H. Kohlstedt, U. Poppe et al., "Resistive switching in metal-ferroelectric-metal junctions," Appl. Phys. Lett. 83 (22), 4595-4597 (2003).
    [37] M. C. Ni, S. M. Guo, H. F. Tian et al., "Resistive switching effect in SrTiO3-delta/Nb-doped SrTiO3 heterojunction," Appl. Phys. Lett. 91 (18), 3 (2007).
    [38] Nalwa H.S., "Ferroelectric and Dielectric Thin Films," Academic Press
    [39] D. S. Jeong, H. Schroeder, and R. Waser, "Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack," Electrochem. Solid State Lett. 10 (8), G51-G53 (2007).
    [40] Y. Watanabe, "Electrical transport through Pb(Zr,Ti)O3 p-n and p-p heterostructures modulated by bound charges at a ferroelectric surface: Ferroelectric p-n diode," Phys. Rev. B 59 (17), 11257-11266 (1999).
    [41] G. W. Dietz, W. Antpohler, M. Klee et al., "Electrode influence on the charge-transport through SrTiO3 thin-films," J. Appl. Phys. 78 (10), 6113-6121 (1995).
    [42] R. Thomas, D. C. Dube, M. N. Kamalasanan et al., "Electrical properties of sol-gel processed amorphous BaTiO3 thin films," J. Sol-Gel Sci. Technol. 16 (1-2), 101-107 (1999).
    [43] Ben G.Streetman,Sanjay Banerjee., Solid State Electronic Devices,"Prentice Hall International,Inc
    [44] S. M. Sze and D. J. Coleman, "Current transport in metal-semiconductor-metal (MSM) structures," S&d-Stare EIecfronics 14, 10 (1971).
    [45] T. K. Y. Wong, B. J. Kennedy, C. J. Howard et al., "Crystal structures and phase transitions in the SrTiO3-SrZrO3 solid solution," J. Solid State Chem. 156 (2), 255-263 (2001).
    [46] R. V. Shende, D. S. Krueger, and S. J. Lombardo, "Solid state synthesis, processing, and electrical properties of Sr(TixZr1-x)O3 (0 <= x <= 1) ceramics for high voltage applications," J. Ceram. Process. Res. 4 (4), 191-196 (2003).
    [47] T. Harigai, D. Tanaka, S. M. Nam et al., "Preparation and dielectric properties of SrZrO3/SrTiO3 superlattices," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 43 (9B), 6530-6534 (2004).
    [48] J. Bera and S. K. Rout, "SrTiO3-SrZrO3 solid solution: Phase formation kinetics and mechanism through solid-oxide reaction," Mater. Res. Bull. 40 (7), 1187-1193 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE