研究生: |
劉振霖 Chen-Lin Liu |
---|---|
論文名稱: |
Energy Transfer between Highly Vibrationally Excited Aromatic Molecules and Rare Gases Using a Crossed-Beam Apparatus along with Time-Sliced Velocity Map Ion Imaging Techniques 以交叉分子束及離子速度影像技術研究高振動激發態分子與惰性氣體之間的能量轉移 |
指導教授: |
倪其焜
Chi-Kung Ni |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 230 |
中文關鍵詞: | 交叉分子束 、碰撞 、高振動態分子 、能量轉移 、萘 、薁 、離子速度影像技術 |
外文關鍵詞: | cross-beam, collision, highly vibratioanlly excited molecules, energy transfer, naphthalene, azulene, velocity map ion imaging |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Abstract
The energy transfer between highly vibrationally excited molecules and rare gas was studied using a crossed-beam apparatus along with time-sliced velocity map ion imaging techniques. Two molecular systems were studies. The first one is the collision between highly vibrationally excited azulene and rare gas (Kr, Ar) in a series of translational collision energies (i.e., relative translational energies 170 - 780 cm-1 for Kr and 200 - 983 cm-1 for Ar). "Hot" azulene (4.66 eV vibrational energy) was formed via rapid internal conversion of azulene initially excited to the S4 state by 266 nm photons. The shapes of the collision energy-transfer probability density functions were measured directly from the scattering results of highly vibrationally excited (hot) azulene. At low enough collision energies, azulene-Kr and azulene-Ar complexes were observed, resulting in small amount of translational to vibrational-rotational (T-VR) energy transfer. T-VR energy transfer was found to be quite efficient. On the other hand, only a small fraction of vibrational energy is converted to translational energy (V-T). We have found that substantial amount of energy transfer in the backward scattering direction due to supercollisions at high collision energies.
The second one is energy transfer between highly vibrationally excited naphthalene and rare gas (Kr, Xe). The research of collision between hot naphthalene and Kr atom was in a series of translational collision energies (108~847 cm-1). Highly vibrationally excited naphthalene in the triplet state (vibrational energy: 16194 cm-1; electronic energy: 21400 cm-1) was formed via rapid intersystem crossing of naphthalene initially excited to S2 state by 266 nm photons. Similar phenomena to that of azulene were found in the energy transfer of naphthalene. In addition, the vibrational energy dependence, H and D atom isotope effect, mass effect, and the rotation effect in the energy transfer between rare gas atoms and highly vibrationally excited naphthalene in the triplet state were also investigated. Increase of vibrational energy from 16194 cm-1 to 18922 cm-1 shows almost the same phenomena in energy transfer. The energy transfer properties remain alike when H atoms in naphthalene are replaced by D atoms, indicating that the high vibrational frequency modes like C-H starches do not play important roles in energy transfer. They are not important in supercollisions, either. However, replacement of Kr atom by Xe causes the shapes of energy transfer probability density functions to change, and makes the high energy tail in the backward scattering to disappear. The probability of very large vibration to translation energy transfer, like supercollisions, is also decreased. The influence of rotation was found to be significant. As the initial rotational temperature increases, the vibrational to translational energy transfer (V®T) cross-section to translational to vibrational-rotational energy transfer (T®VR) cross-section ratio increases, but the probability to form complexes during the collisions decreases. At high initial rotational temperature, a considerable increase in the probability of large V®T(R) energy transfer, like supercollisions, have been noticed.
References
1-1 B. M. Toselli, J. D. Brenner, M. L. Yerram, W. E. Chin, K. D. King, and J. R. Barker, J. Chem. Phys. 95(1), 176 (1991)
1-2 H. Hippler, J. Troe, and H. J. Wendelken, J. Chem. Phys. 78(11), 6709 (1983)
1-3 G. W. Flynn, R. E. Weston, Jr., J. Phys. Chem. 97, 8116 (1993)
1-4 G. V. Hartland, D. Qin, H. L. Dai, and C. Chen, J. Chem. Phys. 107(8), 2890 (1997)
1-5 U. Hold, T. Lenzer, K. Luther, K. Reihs, and A. C. Symonds, J. Chem. Phys. 112, 4076 (1999)
1-6 U. Hold, T. Lenzer, K. Luther, and A. C. Symonds, J. Chem. Phys. 119, 11192 (2003)
1-7 D. Nilsson and S. Nordholm, J. Chem. Phys. 119, 11212 (2003)
1-8 D. L. Clarke, K. G. Thomson, and R.G. Gilbert, Chem. Phys. Letter 182, 357 (1991)
1-9 C. L. Liu, H. C. Hsu, and C. K. Ni, Phys. Chem. Chem. Phys. 7, 2151 (2005).
1-10 V. Bernshtein, I. Oref, J. Phys. Chem. 98, 3782 (1994)
1-11 V. Bernshtein, I. Oref, J. Phys. Chem. 97, 12811 (1993)
1-12 V. Bernshtein, I. Oref, G. Lendvay, J. Phys. Chem. 100, 9738 (1996)
1-13 A. J. Stace and J. N. Murrell, J. Chem. Phys. 68, 3028 (1978)
1-14 N. Brown and J. Miller, J. Chem. Phys. 80, 5568 (1984)
1-15 H. Hippler, H. W. Schranz, and J. Troe, J. Phys. Chem. 90, 6158 (1986)
1-16 G. Lendvay and G. C. Schatz, J. Chem. Phys. 94, 8864 (1990)
1-17 D. L. Clarke, K. C. Thompson, and R. G. Gilbert, Chem. Phys. Lett. 182, 357 (1991)
1-18 I. Oref, Chem. Phys. 187, 163 (1994)
1-19 D. C. Clary, R. G. Gilbert, V. Bernshtein, and I. Oref, Faraday Discuss. 102, 423 (1995)
1-20 V. Bernshtein and I. Oref, J. Chem. Phys. 106, 7080 (1997)
1-21 V. Bernshtein and I. Oref, J. Chem. Phys. 108, 3543 (1998)
1-22 S. Hassoon, I. Oref, and C. Steel, J. Chem. Phys. 89, 1743 (1988)
1-23 L. M. Morgulis, S. S. Sapers, C. Steel, and I. Oref, J. Chem. Phys. 90, 923 (1989)
1-24 A. Pashutzki and I. Oref, J. Phys. Chem. 92, 178 (1988)
1-25 Hipper, L. Lindemann, and J. Troe, J. Chem. Phys. 83, 3906 (1985).
1-26 H. Hipper, B. Otto, and J. Troe, J. Ber. Bunsen-Ges. Phys. Chem. 93, 428 (1989).
1-27 M. Damm, H. Hipper, J. Troe, J. Chem. Phys. 88, 3564 (1988).
1-28 M. J. Rossi, J. R. Pladziewicz, and J. R. Barker, J. Chem. Phys. 78, 6695 (1983).
1-29 J. Shi, D. Bernfeld, and J. R. Barker, J. Chem. Phys. 88, 6211 (1988).
1-30 J. Shi and J. R. Barker, J. Chem. Phys. 88,6219 (1988).
1-31 B. M. Toselli, J. Barker, J. Chem. Phys. 97, 1809 (1002).
1-32 V. Bernshtein, I. Oref, C. L. Liu, H. C. Hsu, C. K. Ni, Chem. Phys. Lett. 429, 317 (2006).
1-33 V. Bernshtein and I. Oref, J. Chem. Phys. 125, 133105 (2006).
1-34 V. Bernshtein and I. Oref, Molec. Phys. (in press)
2-1 C. L. Liu, H. C. Hsu, J. J. Lyu, and C. K. Ni, J. Chem. Phys. 123, 131102 (2005)
2-2 C. L. Liu, H. C. Hsu, J. J. Lyu, and C. K. Ni, J. Chem. Phys. 124, 54302 (2006)
2-3 C. L. Liu, H. C. Hsu, J. J. Lyu, and C. K. Ni, J. Chem. Phys. 125, 204309 (2006)
2-4 J. J. Lin, J. Zhou, W. Shiu, and Kopin Liu, Science 300, 966(2003)
2-5 C. L. Liu, H. C. Hsu, and C. K. Ni, Phys. Chem. Chem. Phys., 7, 2151 (2005)
2-6 B. Y. Chang, R. C. Hoetzlein, J. A. Mueller, J. D. Geiser, and P. L. Houston, Rev. Sci. Instrum. 69, 1665 (1998)
2-7 André T. J. B. Eppink, and David H. Parker, Rev. Sci. Instrum. 68, 3477 (1997)
2-8 J. J. Lin, J. Zhou, W. Shiu, and Kopin Liu, Rev. Sci. Instrum. 74, 2495(2003)
2-9 U. Even, J. Jortner, D. Noy, and N. Lavie, J. Chem. Phys. 112, 8068 (2000)
2-10 M. Hillenkamp, S. Keinan, and U. Even, J. Chem. Phys. 118, 8699 (2003)
2-11 M. Hillenkamp, S. Keinan, and U. Even, J. Chem. Phys. 118, 8699 (2003)
2-12 C.L. Liu, H. C. Hsu, Y. C. Hsu, and C.K. Ni, J. Chem. Phys. 127, 104311 (2007)
3-1 C. L. Liu, H. C. Hsu, and C. K. Ni, Phys. Chem. Chem. Phys., 7, 2151 (2005)
3-2 K. P. Huber and G. Herzberg, in Constants of Diatomic Molecules., Van Nostrand-Reinhold, New York, 1979
3-3 Chemistry Webbook, The National Institute of Standards and Technology (NIST), Gaithersburg, MD, http://webbook.nist.gov/chemistry/.
3-4 M. C. R. Cockett, R. J. Donovan and K. P. Lawley, J. Chem. Phys., 105, 3347 (1996)
3-5 A. J. Yencha, M. C. R. Cockett, J. G. Goode, R. J. Donovan, A. Hopkirk and G. C. King, Chem. Phys. Lett., 119, 347 (1994)
3-6 E. Wrede, S. Laubach, S. Schulenburg, A. Brown, E. R. Wouters, A. J. Orr-Ewing and M. N. R. Ashfold, J. Chem. Phys., 114, 2629 (2001)
3-7 S. M. Bellm, R. J. Moulds and W. D. Lawrance, J. Chem. Phys., 115, 10709 (2001)
3-8 C. L. Liu, H. C. Hsu, J. J. Lyu, and C. K. Ni, J. Chem. Phys. 123, 131102 (2005)
3-9 C. L. Liu, H. C. Hsu, J. J. Lyu, and C. K. Ni, J. Chem. Phys. 124, 54302 (2006)
3-10 C. L. Liu, H. C. Hsu, J. J. Lyu, and C. K. Ni, J. Chem. Phys. 125, 204309 (2006)
3-11 C. L. Liu, H. C. Hsu, and C. K. Ni, Inside front cover of Phys. Chem. Chem. Phys., 2005, 7, 2086 (2005)
3-12 C. L. Liu, H. C. Hsu, Y. C. Hsu, and C. K. Ni, J. Chem. Phys. 127, 104311 (2007)
4-1 H. C. Hsu, J. J. Lyu, C. L. Liu, C. L. Huang, and C. K. Ni, J. Chem. Phys., 124, 54301 (2006)
4-2 D. M. Golden, G. N. Spokes, and S. W. Benson, Angew. Chem., Int. Ed. Engl. 85, 602 (1973)
4-3 Combustion Chemistry, edited by W. C. Gardiner, Jr. (Sringer-Verlag, New York, 1984)
4-4 D. J. Hucknall, Chemistry of Hydrocarbon Combustion (Chapman and Hall, London, 1985)
4-5 B. Able, B. Herzog, H. Hippler, and J. Troe, J. Chem. Phys. 91, 890 (1989)
4-6 J. M. Zellweger, T. C. Brown, and J. R. Baker, J. Phys. Chem. 90, 461 (1986)
4-7 K. M. Beck and R. J. Gordon, J. Chem. Phys. 87, 5681 (1987)
4-8 P. L. Travor, T. Rothem, and J. R. Barker, Chem. Phys. 63, 341 (1982)
4-9 J. Shi and J. R. Barker, J. Chem. Phys. 88, 6219 (1988)
4-10 U. Hold, T. Lenzer, K. Luther, and A. C. Symonds, J. Chem. Phys. 119, 11192 (2003)
4-11 I. M. Morgulis, S. S. Sapers, C. Steel, and I. Oref, J. Chem. Phys. 90, 923 (1989)
4-12 C. A. Michaels, Z. Lin, A. S. Mullin, H. C. Tapalian, and G. W. Flynn, J. Chem. Phys. 106, 7055 (1997)
4-13 S. T. Tsai, C. K. Lin, Y. T. Lee, and C. K. Ni, J. Chem. Phys. 113, 675 (2000)
4-14 C. L. Huang, J. C. Jiang, Y. T. Lee, S. H. Lin, and C. K. Ni, Aust. J. Chem. 54, 561 (2001)
4-15 Chemistry Webbook, The National Institute of Standards and Technology (NIST), Gaithersburg, MD, http://webbook.nist.gov/chemistry/
4-16 M. Fuji, T. Ebata, N. Mikami, and M. Ito, Chem. Phys. 7, 2151 (2005)
4-17 Y. A. Dyakov, S. H. Lin, Y. T. Lee, C. K. Ni, and A. M. Mebel, J. Phys. Chem. A 109, 8774 (2005)
5-1 C. L. Liu, H. C. Hsu, J. J. Lyu, and C. K. Ni, J. Chem. Phys. 123, 131102 (2005)
5-2 C. L. Liu, H. C. Hsu, J. J. Lyu, and C. K. Ni, J. Chem. Phys. 124, 54302 (2006)
5-3 V. Bernshtein, I. Oref , C. L. Liu, H. C. Hsu, C. K. Ni, Chem. Phy. Letters, 429, 317 (2006)
5-4 J. J. Lin, J. Zhou, W. Shiu, and Kopin Liu, Rev. Sci. Instrum. 74, 2495(2003)
5-5 V. Bernshtein, I. Oref , J. Chem. Phys. 125, 133105 (2006)
5-6 C. L. Liu, H. C. Hsu, J. J. Lyu, and C. K. Ni, J. Chem. Phys. 125, 204309 (2006)
5-7 D. L. Clarke, K. C. Thompson, and R. G. Gilbert, Chem. Phys. Lett. 182, 357 (1991)
5-8 V. Bernshtein and I. Oref, J. Chem. Phys. 106, 7080 (1997)
5-9 V. Bernshtein and I. Oref, J. Phys. Chem. 98, 3782 (1994)
5-10 I. Oref and D. C. Tardy, Chem. Rev. (Washington, D.C.) 90, 1407(1990)
6-1 M. C. R. Cockett, H. Ozeki, K. Okuyama, and K. Kimura, J. Chem. Phys. 98, 7763 (1993).
6-2Chemistry Webbook, The National Institute of Standards and Technology (NIST), Gaithersburg, MD, http://webbook.nist.gov/chemistry/
6-3 H. W. Jochims, H. Rasekh, E. Ruhl, H. Baumgartel, S. Leach, Chem. Phys. 168, 159 (1992).
6-4 H. W. Jochims, H. Rasekh, E. Ruhl, H. Baumgartel, S. Leach, J. Phys. Chem. 97, 1312 (1993).
6-5 Y. Gotkis, M. Oleinikova, M. Naor, C. Lifshitz, J. Phys. Chem. 97, 12282 (1993).
6-6 J. J. Lin, J. Zhou, W. Shiu, and K. Liu, Rev. Sci. Instrum. 74, 2495 (2003).
6-7 C. L. Liu, H. C. Hsu, and C. K. Ni, Phys. Chem. Chem. Phys. 7, 2151 (2005).
6-8 C. Reyle and P. Brechignac, Eur. Phys. J. D 8, 205 (2000).
6-9 M. Suto, X. Wang, J. Shan, and L. C. Lee, J. Quant. Spectrosc. Radiat. Transfer 48, 79 (1992).
6-10 P. Avouris, W. M. Gelbart, and M. A. El-Sayed, Chemical Review, 77, 793 (1977).
6-11 M. Stockburger, H. Gattermann, and W. Klusmann, J. Chem. Phys. 63, 4529 (1975).
6-12 Yu. A. Dyakov, C. K. Ni, S. H. Lin, Y. T. Lee, A. M. Mebel, J. Phys. Chem. A. 109, 8774 (2005).
6-13 H. C. Hsu, J. J. Lyu, C. L. Liu, C. L. Huang, and C. K. Ni, J. Chem. Phys., 124, 54301 (2006)
6-14 C. L. Liu, H. C. Hsu, J. J. Lyu, and C. K. Ni, J. Chem. Phys. 123, 131102 (2005)
6-15 C. L. Liu, H. C. Hsu, J. J. Lyu, and C. K. Ni, J. Chem. Phys. 124, 54302 (2006)
6-16 C. L. Liu, H. C. Hsu, J. J. Lyu, and C. K. Ni, J. Chem. Phys. 125, 204309 (2006)
6-17 C. L. Liu, H. C. Hsu, Y. C. Hsu, and C.K. Ni, J. Chem. Phys. 127, 104311 (2007)
6-18 V. Bernshtein, I. Oref, J. Phys. Chem. 98, 3782 (1994)
6-19 V. Bernshtein, I. Oref, J. Phys. Chem. 97, 12811 (1993)
6-20 V. Bernshtein, I. Oref, G. Lendvay, J. Phys. Chem. 100, 9738 (1996)
6-21 N. Brown, J. A. Miller, J. Chem. Phys. 80, 5568 (1984).
6-22 G. Lendvay and G. C. Schatz, J. Phys. Chem. 94, 8864, (1990).
6-23 S. Hasson, I. Oref, C. Steel, J. Chem. Phys. 89, 1743 (1988).
6-24 L. M. Morgulis, S. S. Sapers, C. Steel, I. Oref, J. Chem. Phys. 90, 923 (1989).
6-25 A. Pashutzki, I. Oref, J. Phys. Chem. 92, 178 (1988).
6-26 D. C. Clary, R. G. Gilbert, V. Bernshtein, and I. Oref, Faraday Discuss. 102, 423 (1995).
6-27 Y. Amatatsu and Y. Komura, J. Chem. Phys. 125, 174311 (2006).
6-28 E. R. Lippincott, E. J. O’Reilly, JR., J. Chem. Phys. 23, 238 (1955)
6-29 K. B. Hewett, M. Shen, C. L. Brummel, and L. A. Philips, J. Chem. Phys. 100(6), 4077 (1994)
6-30 D. C. Jacobs, R. J. Madix, and R. N. Zare, J. Chem. Phys. 85(10), 5469 (1986)
6-31 R. Engleman, JR., and P. E. Rouse, Journal of Molecular Spectroscopy 37, 240-251 (1971)
6-32 J. Danielak, U. Domin, R. Kepa, M. Rytel, and M. Zachwieja, Journal of Molecular Spectroscopy 181, 394-402 (1971)
6-33 E. D. Palik and K. Narahari Rao, J. Chem. Phys. 25, 1174 (1956)
6-34 M. H. Alexander, P. Andresen, R. Bacis, R. Bersohn, F. J. Comes, P. J. Dagdigian, R. N. Dixon, R. W. Field, G. W. Glynn, K.-H. Gercke, E. R. Grant, B. J. Howard, J. R. Huber, D. S. King, J. L. Kinsey, K. Kleinermanns, K. Kuchitsu, A. C. Luntz, A. J. McCaffery, B. Pouilly, H. Reisler, S. Rosenwaks, E. W. Rothe, M. Shapiro, J. P. Simons, R. Vasudev, J. R. Wiesenfeld, C. Wittig, R. N. Zare, J. Chem. Phys. 89(4), 1749 (1988)
6-35 G. Herzberg, J. W. T. Spinks, Molecular Spectra and Molecular Structure Ⅰ. Spectra of Diatomic Molecules, 2rd edition (1950)
6-36 V. Bernshtein and I. Oref, J. Phys. Chem. 106, 7080 (1997)
6-37 B. M. Toselli, J. Barker, J. Chem. Phys. 97, 1809 (1002)
6-38 H. Hipper, L. Lindemann, and J. Troe, J. Chem. Phys. 83, 3906 (1985).
6-39 J. Shi and J. R. Barker, J. Chem. Phys. 88, 6219 (1988).
6-40 H. Hippler, J. Troe, and H. J. Wendelken, J. Chem. Phys. 78, 5351 (1983).
6-41 H. Hippler, J. Troe, and H. J. Wendelken, J. Chem. Phys. 78, 6709 (1983).
6-42 H. Hippler, J. Troe, and H. J. Wendelken, J. Chem. Phys. 78, 6718 (1983).