簡易檢索 / 詳目顯示

研究生: 賀佳欣
Ho, Chia-Shin.
論文名稱: 藉由間質幹細胞分泌的外泌體所轉移至癌細胞的RNAs/蛋白質能夠調控其癌症幹細胞的特性
Exosome‐mediated transfer of RNAs/proteins from mesenchymal stem cells to cancer cells contributes to modulating the cancer stem cell properties
指導教授: 李佳霖
Lee, Jia-Lin
口試委員: 張壯榮
Chang, Chuang-Rung
王翊青
Wang, I-Ching
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 46
中文關鍵詞: 肺癌癌症幹細胞腫瘤微環境間質幹細胞外泌體人抗原R蛋白
外文關鍵詞: Lung cancer, Cancer stem cells, Tumor microenvironment, Mesenchymal stem cells, Exosome, HuR protein
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   腫瘤微環境和癌細胞之間會以許多不同的方式彼此相互作用,包括作為介質之一的外泌體 (exosomes),其為一種細胞外囊泡 (extracellular vesicles,EVs)。許多研究已經報導,外來體攜帶的特定貨物 (cargo) 具有調節癌細胞特性的能力。 HuR 蛋白 (HuR protein) 是一種RNA結合蛋白 (RNA-binding protein),可藉由結合不同的 RNA 片段加以控制基因的表達,進而改變細胞的生理活性。在本項研究中,我們主要想探討間質幹細胞 (mesenchymal stem cells,MSCs) 所分泌的外泌體是否可以攜帶 HuR 蛋白/HuR 相關 RNAs (HuR-associated RNAs) 並影響癌細胞的特性,使其更相似於癌症幹細胞 (cancer stem cells,CSCs)。

      我們使用 CRISPR/Cas9 技術在肺癌細胞 LM-V252 (上皮型) 和 HM20-V252 (間質型) 中剔除 ELAVL1 基因 (HuR),再以含有 HuR 蛋白的 MSCs 衍生外泌體進行作用,觀察是否影響其功能特性,包含測試使癌細胞獲得更多 CSC 特性的潛力。首先,我們通過西方墨點法 (western blot) 和免疫螢光染色 (immunofluorescence staining) 發現 HuR / HuR 相關 RNAs 可以轉移至 MSC 衍生的外泌體之中,並且於作用 24 小時後大多數的癌細胞皆能吞入 MSC 衍生的外泌體。此外,使用 RT-PCR測定上皮-間質轉化 (epithelial-mesenchymal transition,EMT) 相關和CSC相關的基因表達。測定和比較加入MSC衍生的外來體作用後CRISPR-control V257和ELAVL1 (HuR)-剔除 V252 細胞之間的差異。有趣的是,我們發現經過 MSC 衍生的外來體作用可以增加 HM20-ELAVL1 (HuR) 剔除細胞中 EMT 相關基因的表達,而在 LM-ELAVL1 (HuR) 剔除細胞中卻有相反的效應。除此之外,加入外泌體作用後,HM20-V252 的球體形成能力增加,表示癌細胞加強了 CSC 的性質,而LM-V252 則是降低了此能力。

      整體而言,根據上述研究結果我們認為 MSC 衍生的外泌體所攜帶的 HuR 蛋白結合了特定的短/長非編碼 RNA (short/long non-coding RNAs),並進入癌細胞內調節其惡化的程度以及 CSC 的特性。


      The tumor microenvironment and cancer cells interact with each other in many different ways. Which is including exosomes, a type of extracellular vesicles (EVs), as one of the mediums. Many studies have reported that the specific cargo carried by exosomes has the ability to regulate the characteristics of cancer cells. HuR protein, an RNA-binding protein, can bind to different RNA segments to control the expression of genes, and then change physiological activities of cells. In this study, we mainly would like to study whether the exosomes secreted by mesenchymal stem cells (MSCs) can carry HuR protein/HuR-associated RNAs and affect the properties of cancer cells to make them more similar to cancer stem cells (CSCs).

      We used the CRISPR/Cas9 technology to knockout ELAVL1 gene (HuR) in lung cancer cells LM-V252 (epithelial-type) and HM20-V252 (mesenchymal-type), and then treated with MSC derived-exosome which containing HuR to observe whether that would affect its functional properties, including testing for the potential to make cancer cells gaining more the CSC properties. First, we found that HuR/HuR-associated RNAs can translocate into MSC-derived exosomes by western blot and immunofluorescence staining, and then most of cancer cells can uptake MSC-derived exosomes after treatment for 24 hours. Furthermore, RT-PCR was used to respectively determine the expression of epithelial-mesenchymal transition (EMT)-related and CSC-related genes. The differences between CRISPR-control V257and ELAVL1 (HuR)-knockout V252 after treatment with MSC derived-exosomes were determined and compared. Interestingly, we found that treatment of MSC-derived exosomes could increase the expression of EMT-related genes in HM20-ELAVL1 (HuR)-knockout cells, whereas the effects were opposite in LM-ELAVL1 (HuR)-knockout cells. In addition, the ability of sphere-forming was increased in HM20-V252 cells after treatment with exosomes but reduced the ability in LM-V252, indicating that the CSC properties of cancer cells could be altered by tumor microenvironment via exosome.

      Overall, according to these studies, we expect that HuR protein carried by MSC derived-exosomes binds to specific short/long non-coding RNAs and enters into cancer cells to regulate their deterioration degree and promote the CSC properties.

    Abstract IV Acknowledgement VI Contents VII Chapter 1. Introduction 1 1.1. Lung cancer and epidemiology 1 1.2. Cancer stem cells (CSCs) 2 1.3. Tumor microenvironment and mesenchymal stem cells (MSCs) 4 1.4. Communication medium – exosome 5 1.5. HuR (human antigen R) protein 9 Chapter 2. Materials and Methods 11 2.1. Cell culture 11 2.2. MSC-derived exosomes stimulation model 11 2.3. Cell transfection 12 2.4. CRISPR-Cas9 14 2.5. Western blot (WB) 15 2.6. Immunofluorescence stain (IF) 16 2.7. Immunoprecipitation (IP) 17 2.8. Cell gene expression analysis 18 2.9. Sphere formation assay 19 2.10. Statistical analysis 20 Chapter 3. Result 21 3.1. Isolation of mesenchymal stem cells (MSCs)-derived exosomes and confirmation of the presence of HuR protein 21 3.2. LM and HM20 cells uptake exosomes derived from HuR-expressing MSCs 22 3.3. Preparation of ELAVL1 gene (HuR) knockout lung cancer cells by CRISPR/Cas9 technology 23 3.4. ELAVL1 (HuR)-knockout cells uptake exosomes containing endogenous HuR secreted by MSCs 24 3.5. The relative differences in EMT-related and CSC-related genes expression after treatment with MSC-derived exosomes 25 3.6. Using sphere formation assays to determine the changes of CSC properties after treatment with MSC-derived exosomes. 26 Chapter 4. Discussion 28 References 33 Figures and legends 38

    SEER Cancer Stat Facts: Lung and Bronchus Cancer. National Cancer Institute.
    Bethesda, MD,
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 100(7), 3983-3988.
    Baietti, M. F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., Ivarsson, Y., Depoortere, F., Coomans, C., Vermeiren, E., Zimmermann, P., David, G. (2012). Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol, 14(7), 677-685.
    Bakheet, T., Hitti, E., Al-Saif, M., Moghrabi, W. N., & Khabar, K. S. A. (2018). The AU-rich element landscape across human transcriptome reveals a large proportion in introns and regulation by ELAVL1/HuR. Biochim Biophys Acta, 1861(2), 167-177.
    Bebelman, M. P., Smit, M. J., Pegtel, D. M., & Baglio, S. R. (2018). Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. doi:10.1016/j.pharmthera.2018.02.013
    Berns, A. (2005). Stem Cells for Lung Cancer? Cell, 121(6), 811-813.
    Biancone, L., Bruno, S., Deregibus, M. C., Tetta, C., & Camussi, G. (2012). Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant, 27(8), 3037-3042.
    Bliss, S. A., Sinha, G., Sandiford, O. A., Williams, L. M., Engelberth, D. J., Guiro, K., Isenalumhe, L. L., Greco, S. J., Ayer, S., Bryan, M., Kumar, R., Ponzio, N. M., Rameshwar, P. (2016). Mesenchymal Stem Cell-Derived Exosomes Stimulate Cycling Quiescence and Early Breast Cancer Dormancy in Bone Marrow. Cancer Res, 76(19), 5832-5844.
    Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730.
    Cao, L., Zhou, Y., Zhai, B., Liao, J., Xu, W., Zhang, R., Li, J., Zhang, Y., Chen, L., Qian, H., Wu, M., Yin, Z. (2011). Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterology, 11(1), 71.
    Christianson, H. C., Svensson, K. J., van Kuppevelt, T. H., Li, J. P., & Belting, M. (2013). Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A, 110(43), 17380-17385.
    Colombo, M., Moita, C., van Niel, G., Kowal, J., Vigneron, J., Benaroch, P., Manel, N., Moita, L. F., Théry, C., Raposo, G. (2013). Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci, jcs. 128868.
    De Craene, B., & Berx, G. (2013). Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer, 13(2), 97-110.
    Filippova, N., Yang, X., Ananthan, S., Sorochinsky, A., Hackney, J. R., Gentry, Z., Bae, S., King, P., Nabors, L. B. (2017). Hu antigen R (HuR) multimerization contributes to glioma disease progression. J Biol Chem, 292(41), 16999-17010.
    Gauchotte, G., Hergalant, S., Vigouroux, C., Casse, J. M., Houlgatte, R., Kaoma, T., Helle, D., Brochin, L., Rech, F., Peyre, M., Labrousse, F., Vallar, L., Guéant, J. L., Vignaud, J. M., Battaglia-Hsu, S. F. (2017). Cytoplasmic overexpression of RNA-binding protein HuR is a marker of poor prognosis in meningioma, and HuR knockdown decreases meningioma cell growth and resistance to hypoxia. J Pathol, 242(4), 421-434.
    Hall, B., Dembinski, J., Sasser, A. K., Studeny, M., Andreeff, M., & Marini, F. (2007). Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol, 86(1), 8-16.
    Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., Richardson, A. L., Polyak, K., Tubo, R., Weinberg, R. A. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557-563.
    Kowal, J., Tkach, M., & Thery, C. (2014). Biogenesis and secretion of exosomes. Curr Opin Cell Biol, 29, 116-125.
    Kumar, D., Gupta, D., Shankar, S., & Srivastava, R. K. (2015). Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer. Oncotarget, 6(5), 3280-3291.
    Lai, R. C., Yeo, R. W., & Lim, S. K. (2015). Mesenchymal stem cell exosomes. Semin Cell Dev Biol, 40, 82-88.
    Liu, A., Yu, X., & Liu, S. (2013). Pluripotency transcription factors and cancer stem cells: small genes make a big difference. Chin J Cancer, 32(9), 483-487.
    Lou, G., Song, X., Yang, F., Wu, S., Wang, J., Chen, Z., & Liu, Y. (2015). Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol, 8, 122.
    Lubin, J. H., & Blot, W. J. (1984). Assessment of Lung Cancer Risk Factors by Histologic Category. JNCI: Journal of the National Cancer Institute, 73(2), 383-389.
    Masyuk, A. I., Masyuk, T. V., & Larusso, N. F. (2013). Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol, 59(3), 621-625.
    Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: extracellular organelles important in intercellular communication. J Proteomics, 73(10), 1907-1920.
    McGough, I. J., & Vincent, J. P. (2016). Exosomes in developmental signalling. Development, 143(14), 2482-2493.
    McKelvey, K. J., Powell, K. L., Ashton, A. W., Morris, J. M., & McCracken, S. A. (2015). Exosomes: Mechanisms of Uptake. J Circ Biomark, 4, 7.
    Mittal, S., Mifflin, R., & Powell, D. W. (2009). Cancer Stem Cells: The Other Face of Janus. The American Journal of the Medical Sciences, 338(2), 107-112.
    Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E., & Adjei, A. A. (2008). Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clinic Proceedings, 83(5), 584-594.
    Molofsky, A. V., Pardal, R., & Morrison, S. J. (2004). Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol, 16(6), 700-707.
    Moradi, F., Berglund, P., Linnskog, R., Leandersson, K., Andersson, T., & Prasad, C. P. (2016). Dual mechanisms of action of the RNA-binding protein human antigen R explains its regulatory effect on melanoma cell migration. Transl Res, 172, 45-60.
    Mulcahy, L. A., Pink, R. C., & Carter, D. R. (2014). Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles, 3.
    Naito, Y., Yoshioka, Y., Yamamoto, Y., & Ochiya, T. (2017). How cancer cells dictate their microenvironment: present roles of extracellular vesicles. Cell Mol Life Sci, 74(4), 697-713.
    O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2006). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445, 106.
    Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principles of stem-cell biology to cancer. Nat Rev Cancer, 3(12), 895-902.
    Polyak, K., & Hahn, W. C. (2006). Roots and stems: stem cells in cancer. Nat Med, 12(3), 296-300.
    Radisky, D. C., & LaBarge, M. A. (2008). Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell, 2(6), 511-512.
    Ren, J., & Guo, W. (2012). ERK1/2 regulate exocytosis through direct phosphorylation of the exocyst component Exo70. Dev Cell, 22(5), 967-978.
    Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105.
    Richards, K. E., Zeleniak, A. E., Fishel, M. L., Wu, J., Littlepage, L. E., & Hill, R. (2017). Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene, 36(13), 1770-1778.
    Richter, C., Chang, J. T., & Fineran, P. C. (2012). Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses, 4(10), 2291-2311.
    Roma-Rodrigues, C., Raposo, L. R., Cabral, R., Paradinha, F., Baptista, P. V., & Fernandes, A. R. (2017). Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy. Int J Mol Sci, 18(1).
    Shang, J., & Zhao, Z. (2017). Emerging role of HuR in inflammatory response in kidney diseases. Acta Biochim Biophys Sin (Shanghai), 49(9), 753-763.
    Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., Dirks, P. B. (2004). Identification of human brain tumour initiating cells. Nature, 432, 396.
    Stagg, J. (2008). Mesenchymal stem cells in cancer. Stem Cell Rev, 4(2), 119-124.
    Stuffers, S., Sem Wegner, C., Stenmark, H., & Brech, A. (2009). Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic, 10(7), 925-937.
    Syn, N., Wang, L., Sethi, G., Thiery, J. P., & Goh, B. C. (2016). Exosome-Mediated Metastasis: From Epithelial-Mesenchymal Transition to Escape from Immunosurveillance. Trends Pharmacol Sci, 37(7), 606-617.
    Teng, Y., Ren, Y., Hu, X., Mu, J., Samykutty, A., Zhuang, X., Deng, Z., Kumar, A., Zhang, L., Merchant, M. L., Yan, J., Miller, D. M., Zhang, H. G. (2017). MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun, 8, 14448.
    Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Biosci Rep, 35(2).
    Valencia, K., Luis-Ravelo, D., Bovy, N., Anton, I., Martinez-Canarias, S., Zandueta, C., Ormazábal, C., Struman, I., Tabruyn, S., Rebmann, V., Rivas, D. L. J., Guruceaga, E., Bandrés, E., Lecanda, F. (2014). miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol, 8(3), 689-703.
    Wang, M., Zhao, J., Zhang, L., Wei, F., Lian, Y., Wu, Y., Gong, Z., Zhang, S., Zhou, J., Cao, K., Li, X., Xiong, W., Li, G., Zeng, Z., Guo, C. (2017). Role of tumor microenvironment in tumorigenesis. J Cancer, 8(5), 761-773.
    Wang, M. L., Chiou, S. H., & Wu, C. W. (2013). Targeting cancer stem cells: emerging role of Nanog transcription factor. Onco Targets Ther, 6, 1207-1220.
    Wei, Y., Wang, D., Jin, F., Bian, Z., Li, L., Liang, H., Li, M., Shi, L., Pan, C., Zhu, D., Chen, X., Hu, G., Liu, Y., Zhang, C. Y., Zen, K. (2017). Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat Commun, 8, 14041.
    Yu, Y., Ramena, G., & Elble, R. C. (2012). The role of cancer stem cells in relapse of solid tumors. Front Biosci (Elite Ed), 4(4), 1528-1541.
    Zhou, W., Fong, M. Y., Min, Y., Somlo, G., Liu, L., Palomares, M. R., Yu, Y., Chow, A., O'Connor S. T., Chin, A. R., Yen, Y., Wang, Y., Marcusson, E. G., Chu, P., Wu, J., Wu, X., Li, A. X., Li, Z., Gao, H., Ren, X., Boldin, M. P., Lin, P. C., Wang, S. E. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 25(4), 501-515.
    Zhu, W., Huang, L., Li, Y., Zhang, X., Gu, J., Yan, Y., Xu, X., Wang, M., Qian, H., Xu, W. (2012). Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett, 315(1), 28-37.

    QR CODE