簡易檢索 / 詳目顯示

研究生: 蕭清彥
Hsiao, Ching-Yen
論文名稱: 基於台灣姓名資料估計年齡之比較式架構
A Comparative Framework for Person Age Estimation Using only Taiwanese Name Data
指導教授: 陳宜欣
Chen, Yi-Shin
口試委員: 陳朝欽
Chen, Chaur-Chin
蘇豐文
Soo, Von-Wun
蔡志浩
Tsai, Chih-Hao
學位類別: 碩士
Master
系所名稱:
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 40
中文關鍵詞: 比較式架構機器學習年齡估計性別猜測階層式分類器模式辨別
外文關鍵詞: Comparative framework, Machine learning, Age estimation, Gender prediction, Hierarchical classifier, Pattern recognition
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 名字不僅僅反映了家族傳承的輩份,更承載了父母的期許,而在現今社群網站的使用非常普遍,使用者們在社群網站發表個人文章或經營粉絲頁並與他人互動已是日常生活的一部份,這些文章也成為重要的研究資料來源。然而網站對於隱私的保護越來越嚴格,當要分析公眾的頁面上留言者的組成時往往會面臨只能知道留言者的名字的窘況,此研究將能幫助探知留言者的性別與年齡層,以更準確的進行如意向分析等等研究。

    本研究針對台灣人所取用的中文名字進行分析,透過中華文化中在取名上常參考的算命規則、名字所承載的意象與意涵、家族中的輩份關係、名字的唸法等等可能的特徵,我們以此去估計台灣人之名字的年齡層以及其性別,更進一步使用了一個比較名字間的年齡大小的架構,以此來降估計年齡之誤差。

    我們的結果顯示,透過使用名字涵義的特性以及考量算命等特徵後能夠有效預測性別,而再搭配上比較式的預估架構,則能夠進行更為接近名字之真實年代的猜測。


    The name itself could carry a lot of meaning, the such as expectation from their parents and the significance of the times.
    This research focus on estimating the age-interval of Taiwanese name. Through the observation of Taiwanese culture to give a name, we customize the feature and use word-embedding to avoid the problem of huge combination of Taiwanese given name. We further use the comparative framework to reduce the predict error.

    Introduction----------1 Related Work----------5 Methodology-----------8 Experiment&Results----19 Conclusions-----------35 Reference-------------36

    [1] Fatma S Abousaleh, Tekoing Lim, Wen-Huang Cheng, Neng-Hao Yu, M Anwar Hos-sain, and Mohammed F Alhamid. A novel comparative deep learning framework for facial age estimation. EURASIP Journal on Image and Video Processing, 2016(1):47,2016.
    [2] Phillip L Ackerman and Margaret E Beier. Intelligence, personality, and interests in the career choice process. Journal of Career Assessment, 11(2):205–218, 2003.
    [3] Margaret E Beier and Phillip L Ackerman. Determinants of health knowledge: an investigation of age, gender, abilities, personality, and interests. Journal of personality and social psychology, 84(2):439, 2003.
    [4] Ali Maina Bukar, Hassan Ugail, and David Connah. Automatic age and gender classification using supervised appearance model. Journal of Electronic Imaging,25(6):061605–061605, 2016.
    [5] Wei-Lun Chao, Jun-Zuo Liu, and Jian-Jiun Ding. Facial age estimation based on label-sensitive learning and age-oriented regression. Pattern Recognition, 46(3):628–641, 2013.
    [6] Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun, and Huan-Bo Luan. Joint learn-ing of character and word embeddings. In IJCAI, pages 1236–1242, 2015.
    [7] Sung Eun Choi, Youn Joo Lee, Sung Joo Lee, Kang Ryoung Park, and Jaihie Kim. A comparative study of local feature extraction for age estimation. In Control Au-tomation Robotics & Vision (ICARCV), 2010 11th International Conference on, pages1280–1284. IEEE, 2010.
    [8] Sung Eun Choi, Youn Joo Lee, Sung Joo Lee, Kang Ryoung Park, and Jaihie Kim. Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recognition, 44(6):1262–1281, 2011.
    [9] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12(Aug):2493–2537, 2011.
    [10] Eilidh Ferguson and Caroline Wilkinson. Juvenile age estimation from facial images. Science & Justice, 57(1):58–62, 2017.
    [11] Erica Frydenberg and Ramon Lewis. Boys play sport and girls turn to others: Age, gender and ethnicity as determinants of coping. Journal of adolescence, 16(3):253–266, 1993.
    [12] Yun Fu, Guodong Guo, and Thomas S Huang. Age synthesis and estimation via faces: A survey. IEEE transactions on pattern analysis and machine intelligence, 32(11):1955–1976, 2010.
    37[13] Xin Geng, Chao Yin, and Zhi-Hua Zhou. Facial age estimation by learning from label distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence,35(10):2401–2412, 2013.
    [14] Walter R Gove. The relationship between sex roles, marital status, and mental illness. Social forces, 51(1):34–44, 1972.
    [15] Ivan Huerta, Carles Fernández, and Andrea Prati. Facial age estimation through the fusion of texture and local appearance descriptors. In ECCV Workshops (2), pages 667–681, 2014.
    [16] Margaret L Kern, David Stillwell, Michal Kosinski, and Lyle H Ungar. Developing age and gender predictive lexica over social media.
    [17] Tekoing Lim, Kai-Lung Hua, Hong-Cyuan Wang, Kai-Wen Zhao, Min-Chun Hu, and Wen-Huang Cheng. Vrank: Voting system on ranking model for human age estimation. In Multimedia Signal Processing (MMSP), 2015 IEEE 17th International Workshop on, pages 1–6. IEEE, 2015.
    [18] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, L Sutskever, and G Zweig. word2vec, 2014.
    [19] Dong Nguyen, Noah A Smith, and Carolyn P Rosé. Author age prediction from text using linear regression. In Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, pages 115–123. Association for Computational Linguistics, 2011.
    [20] Jhony K Pontes, Alceu S Britto, Clinton Fookes, and Alessandro L Koerich. A flexible hierarchical approach for facial age estimation based on multiple features. Pattern Recognition, 54:34–51, 2016.
    [21] Daniel Preotiuc-Pietro, Johannes Eichstaedt, Gregory Park, Maarten Sap, Laura Smith, Victoria Tobolsky, H Andrew Schwartz, and Lyle Ungar. The role of per-sonality, age and gender in tweeting about mental illnesses. In NAACL HLT, volume 2015, page 21, 2015.
    [22] Maarten Sap, Gregory Park, Johannes Eichstaedt, Margaret Kern, David Stillwell, Michal Kosinski, Lyle Ungar, and Hansen Andrew Schwartz. Developing age and gender predictive lexica over social media. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1146–1151,
    2014.
    [23] H Andrew Schwartz, Johannes C Eichstaedt, Margaret L Kern, Lukasz Dziurzynski, Stephanie M Ramones, Megha Agrawal, Achal Shah, Michal Kosinski, David Still-well, Martin EP Seligman, et al. Personality, gender, and age in the language of social media: The open-vocabulary approach. PloS one, 8(9):e73791, 2013.
    [24] Nate Silver. How to tell someone’s age when all you know is her name.
    [25] T Nathan Story, Cynthia A Berg, Timothy W Smith, Ryan Beveridge, Nancy JM Henry, and Gale Pearce. Age, marital satisfaction, and optimism as predictors of positive sentiment override in middle-aged and older married couples. Psychology and aging, 22(4):719, 2007.
    [26] Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. Learning sentiment-specific word embedding for twitter sentiment classification. In ACL (1),pages 1555–1565, 2014.
    [27] Chih-Hao Tsai. A list of chinese names.
    [28] Hao Wang, Dogan Can, Abe Kazemzadeh, François Bar, and Shrikanth Narayanan. A system for real-time twitter sentiment analysis of 2012 us presidential election cycle. In Proceedings of the ACL 2012 System Demonstrations, pages 115–120. Association for Computational Linguistics, 2012.
    [29] Peng Wang, Bo Xu, Jiaming Xu, Guanhua Tian, Cheng-Lin Liu, and Hongwei Hao. Semantic expansion using word embedding clustering and convolutional neural net-work for improving short text classification. Neurocomputing, 174:806–814, 2016.
    [30] Jurgen Wegge, Carla Roth, Barbara Neubach, Klaus-Helmut Schmidt, and Ruth Kan-fer. Age and gender diversity as determinants of performance and health in a public organization: The role of task complexity and group size. Journal of Applied Psy-chology, 93(6):1301, 2008.
    [31] Yonat Zwebner, Anne-Laure Sellier, Nir Rosenfeld, Jacob Goldenberg, and Ruth Mayo. We look like our names: The manifestation of name stereotypes in facial appearance. Journal of personality and social psychology, 112(4):527, 2017.

    QR CODE