研究生: |
吳明園 Ming-Yaun Wu |
---|---|
論文名稱: |
以有機金屬氣相磊晶法研製1.3微米磷化銦鎵量子位障之磷砷化銦鎵應力型多重量子井雷射二極體 1.3 μm GaInAsP Strained Multiple Quantum Well Laser Diodes with GaInP Quantum Barrier Grown by MOCVD |
指導教授: |
吳孟奇
Meng-Chyi Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 131 |
中文關鍵詞: | 半導體雷射 、電子阻擋層 、磷砷化銦鎵/磷化銦 、砷化鋁鎵銦/磷化銦 、有機金屬氣相磊晶法 |
外文關鍵詞: | semiconductor laser, electron stop layer, GaInAsP/InP, AlGaInAs/InP, MOCVD |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光纖通訊系統需要之發光源是半導體雷射最重要應用之一,而1.3微米與1.55微米之雷射二極體是目前用於長距離通訊系統可獲得之光源。另外在標準矽光纖內,1.3微米波長有低損失與可忽略色散特點。其中,磷砷化銦鎵/磷化銦系列在材料成長與元件結構上,尤其在多次磊晶成長與光積體元件等方面,有很大之變通性,是目前長波長雷射之主流材料。然而這材料有較小導電帶差,嚴重影響溫度特性,因此改善1.3微米磷砷化銦鎵半導體雷射之元件特性,是目前非常重要且刻不容緩之研究工作。
本論文中,先探討1.3微米磷砷化銦鎵/磷砷化銦鎵壓力型多重量子井脊狀波導型雷射二極體之主動層材料特性。由光激光譜量測,可知最佳主動層條件,是4 nm寬量子井與10 nm寬位障。接著,將之製作為3.5微米脊狀寬雷射元件。在連續電流注入條件下,900微米共振腔之元件可得920 A/cm2之無限臨界電流密度、60 K之特徵溫度(或可操作到75℃)及發光頻譜之紅移率為0.30 nm/℃。
為改善元件特性,繼續在未摻雜分離局限異質結構內引入磷化銦鎵量子位障。經由光激光譜分析,可知最佳磷化銦鎵量子位障之鎵組成、厚度及對數分別為0.09、5 nm及一對。在p邊分離局限異質接面之最佳結構可產生最小半高寬為43.1 meV,而製作為600微米共振腔之元件有最低之臨界電流為23 mA與特徵溫度為52 K。同樣,900微米共振腔之元件有較小之無限臨界電流密度為690 A/cm2、相近之特徵溫度為57 K(或可操作到85℃)及紅移率為0.28 nm/℃。
另外,針對1.3微米砷化銦鎵鋁/砷化銦鎵鋁應力補償型多重量子井漸變折射率分離局限異質接面雷射二極體,提出一種改進之結構,即結合磷砷化銦鎵與砷化銦鎵鋁漸變組成層,分別被引入在上層(p型)與下層(n型)披覆層間,以期加強載子注入效應而降低臨界電流,且改善其它元件特性。此結構之脊狀型雷射二極體可得較低臨界電流為9 mA、較高特徵溫度為80 K、較小紅移率為0.4 nm/℃及較高鬆弛振盪頻率為8.14 GHz。若不考慮耦合損失與遲滯因子,則3-dB頻寬更達到13.1 GHz。
One of the most important applications for semiconductor lasers is in the field of optical fiber communications. Separately, the 1.3 and 1.55 μm LDs are currently available light sources for long-span communication systems. Further, 1.3-μm-wavelength LDs have lower loss and negligible dispersion for standard silica fibers. GaInAsP/InP series is the most popular material for the long-wavelength lasers attributed to its very large flexibility in material growth and device structure, especially in the multi-step growth and photonic integrated circuits. However, this material has poor temperature characteristics attributed to smaller conduction-band offset. Therefore, it is very important to significantly improve the device performances for 1.3 μm GaInAsP LDs for fiber communication systems.
In this dissertation we first describe the 1.3 μm GaInAsP/GaInAsP CS-MQW RWG LDs grown by MOCVD technique. Observed via the PL spectra, the optimum widths of well and barrier layers are 4 nm and 10 nm, respectively. These as-cleaved 3.5-μm-ridge LDs under the CW condition exhibit an infinite threshold current density of 920 kA/cm2, a characteristic temperature of 60 K (or up to 75℃), and a red-shift rate of 0.30 nm/℃ at a cavity length of 900 μm.
We next demonstrate the 1.3 μm GaInAsP/GaInAsP CS-MQW RWG LDs with GaInP-QB layers in the undoped SCH regions. Through PL measurements, the optimum Ga composition of GaxIn1-xP-QB, GaInP-QB thickness, and pair number of the GaxIn1-xP-QB are 0.09, 5-nm-thick, and one pair, respectively. The optimum GaInP-QB structure in the p-side SCH region exhibits the narrowest PL FWHM of 43.1 meV, and the lowest threshold current of 23 mA and the characteristic temperature of 52 K for the as-cleaved 3.5-μm-ridge LDs at a cavity length of 600 μm. Similarly, the LDs exhibit a lower infinite threshold current density of 690 A/cm2, a comparable characteristic temperature of 57 K (or up to 85℃), and a red-shift rate of 0.28 nm/℃ at a cavity length of 900 μm.
On the other hand, we also present a novel structure for the 1.3 μm AlGaInAs/AlGaInAs SC-MQW GRINSCH LDs with the GaInAsP and AlGaInAs GC layers. This new LD structure exhibits a lower threshold current of 9 mA, a higher characteristic temperature of 80 K, a little red-shift rate of 0.4 nm/℃, and a higher relaxation frequency of 8.14 GHz. Without the coupling loss and damping factor, the 3-dB bandwidth of 13.1 GHz can be achieved.
References
[1] A. L. Schawlow and C. H. Townes, “Infrared and optical masers”, Phys. Rev., vol. 112, pp. 1940-1949, 1958.
[2] T. H. Maiman, “Stimulated optical radiation in Ruby”, Nature, vol. 187, pp. 493-494, 1960.
[3] A. Javan, W. R. Bennett, Jr., and D. R. Herriott, “Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture”, Phys. Rev. Lett., vol. 6, pp. 106-110, 1961.
[4] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions”, Phys. Rev. Lett., vol. 9, pp. 366-368, 1962.
[5] M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions”, Appl. Phys. Lett., vol. 1, pp. 62-64, 1962.
[6] T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs”, Appl. Phys. Lett., vol. 1, pp. 91-92, 1962.
[7] H. Kroemer, “A proposed class of heterojunction injection lasers”, Proc. IEEE, vol. 51, pp. 1962-1963, Dec. 1963.
[8] I. Hayashi, M. B. Panish, and P. W. Foy, “A low-threshold room-temperature injection laser”, IEEE J. Quantum Electron., vol. 5, pp. 211-212 , 1969.
[9] H. Kressel and H. Nelson, “Close-confinement gallium arsenide PN junction lasers with reduced optical loss at room temperature”, RCA Rev., vol. 30, pp. 106-113, 1969.
[10] I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature”, Appl. Phys. Lett., vol. 17, pp. 109-111, 1970.
[11] R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures”, Phys. Rev. Lett., vol. 33, pp. 827-830, 1974.
[12] G. Keiser, Optical Fiber Communications. Singapore: McGraw-Hill, 2000, Chap. 1.
[13] E. Kapon, Semiconductor Lasers II: Materials and Structures. San Diego: Academic, 1999, Chap. 2.
[14] V. M. Ustinov and A. E. Zhukov, “GaAs-based long-wavelength lasers”, Semicond. Sci. Technol., vol. 15, pp. R41-R54, 2000.
[15] E. Yablonovitch and E. O. Kane, “Band structure engineering of semiconductor lasers for optical communication”, IEEE J. Lightwave Tech., vol. 6, pp. 1292-1299, 1988.
[16] P. J. A. Thijs, L. F. Tiemeijer, J. J. M. Binsma, and T. van Dongen, “Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers”, IEEE J. Quantum Electron., vol. 30, pp. 477-499, 1994.
[17] T. Kamijoh, H. Horikawa, Y. Matsui, Y. K. Sin, M. Nakajima, C. Q. Xu, and Y. Ogawa, “Improved operation characteristics of long-wavelength lasers using strained MQW active layers”, IEEE J. Quantum Electron., vol. 30, pp. 524-532, 1994.
[18] M. Fukuda, Optical Semiconductor Devices. New York: Wiley, 1999, Chap. 1.
[19] J. W. Matthews and A. E. Blakeslee, “Defects epitaxial multilayers”, J. Cryst. Growth, vol. 27, pp. 118-125, 1974.
[20] R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures”, Appl. Phys. Lett., vol. 47, pp. 322-324, 1985.
[21] P. E. Brunemeier, D. G. Deppe, and N. Holonyak, and Jr., “Photoluminescence measurements of band discontinuity in InP-InGaPAs heterostructures”, Appl. Phys. Lett., vol. 46, pp. 755-757, 1985.
[22] I. Queisser, V. Härle, A. Dőrnen, and F. Scholz, “Band discontinuity of strained-layer GaInAs/GaInAsP heterostructures”, Appl. Phys. Lett., vol. 64, pp. 2991-2993, 1994.
[23] R. Tsu and L. Esaki, “Tunneling in a finite superlattice”, Appl. Phys. Lett., vol. 22, pp. 562-564, 1973.
[24] K. Iga, H. Uenohara, and F. Koyama, “Electron reflectance of multiquantum barrier (MQB)”, Electron. Lett., vol. 22, pp. 1008-1010, 1986.
[25] T. Takagi, F. Koyama, and K. Iga, “Design and photoluminescence study on a multiquantum barrier”, IEEE J. Quantum Electron., vol. 27, pp. 1511-1519, 1991.
[26] M. Irikawa, H. Shimiza, T. Fukushima, K. Nishikata, and Y. Hirayama, “Strained GaInAs-AlGaInAs 1.5-μm-wavelength multiquantum-well lasers loaded with GaInAs-AlInAs multiquantum barriers at the p-side optical confinement layer”, IEEE J. Sel. Topics Quantum Electron., vol. 1, pp. 285-292, 1995.
[27] J. W. Pan, M. H. Chen, J. I. Chyi, T. T. Shih, “Strain-compensated 1.3-μm AlGaInAs quantum-well lasers with multiquantum barriers at the cladding layers”, IEEE Photo. Tech. Lett., vol. 11, pp. 9-11, 1999.
[28] R. F. Kazarinov and G. L. Belenky, “Novel design of AlGaInAs-InP lasers operating at 1.3 μm”, IEEE J. Quantum Electron., vol. 31, pp. 423-426, 1995.
[29] H. Murai, Y. Matsui, Y. Ogawa, and T. Kunii, “Lasing characteristics under high temperature operation of 1.55μm strained InGaAsP/InGaAlAs MQW laser with InAlAs electron stopper layer”, Electron. Lett., vol. 31, pp. 2105-2107, 1995.
[30] K. Takemasa, T. Munakata, M. Kobayashi, H. Wada, and T. Kamijoh, “1.3-μm AlGaInAs-AlGaInAs strained multiple-quantum-well lasers with a p-AlInAs electron stopper layer”, IEEE Photon. Tech. Lett., vol. 10, pp. 495-497, 1998.
[31] C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μm AlxGayIn1-x-yAs/InP strained-layer quantum-well lasers for subscriber loop applications”, IEEE J. Quantum Electron., vol. 30, pp. 511-523, 1994.
[32] H. Nelson, “Epitaxial growth from the liquid state and its application to the fabrication of tunnel and laser diodes”, RCA Rev., vol. 24, pp. 603-615, 1963.
[33] H. M. Manasevit, “Single-crystal gallium arsenide on insulating substrates”, Appl. Phys. Lett., vol. 12, pp. 156-159, 1968.
[34] A. Y. Cho, “Film deposition by molecular-beam techniques”, J. Vac. Sci. Technol., vol. 8, pp. S31-S38, 1971.
[35] M. J. Ludowise, “Metalorganic chemical vapor deposition of III-V semiconductors”, J. Appl. Phys., vol. 58, pp. R31-R55, 1985.
[36] A. C. Jones, “Metalorganic precursors for vapour phase epitaxy”, J. Cryst. Growth, vol. 129, pp. 728-773, 1993.
[37] A. G. Thompson, “MOCVD technology for semiconductors”, Mater. Lett., vol. 30, pp. 255-263, 1997.
[38] G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice. California: Academic, 1999, Chap 1.
[39] V. Swaminathan and A. T. Macrander, Materials Aspects of GaAs and InP Based Structures. New Jersey: Prentice-Hall, 1991, Chap. 3 and Chap. 5.
[40] S. L. Chuang, “Efficient band-structure calculations of strained quantum wells”, Phys. Rev. B, vol. 43, pp. 9649-9661, 1991.
[41] T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well”, IEEE J. Quantum Electron., vol. 30, pp. 562-570, 1994.
[42] J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers”, IEEE J. Quantum Electron., vol. 35, pp. 771-782, 1999.
[43] S. L. Chuang, Physics of Optoelectronic Devices. New York: Wiley, 1995, Chap. 3.
[44] N. K. Dutta and R. J. Nelson, “The case for Auger recombination in In1-xGaxAsyP1-y”, J. App. Phys., vol. 53, pp. 74-92, 1982.
[45] M. Asada, A. Kameyama, and Y. Suematsu, “Gain and intervalence band absorption in quantum-well lasers“, IEEE J. Quantum Electron., vol. 20, pp. 745-753, 1984.
[46] J. Wang, P. von Allmen, J. P. Leburton, and K. J. Linden, “Auger recombination in long-wavelength strained-layer quantum-well structures”, IEEE J. Quantum Electron., vol. 31, pp. 864-875, 1995.
[47] S. R. Chinn, P. S. Zory, and A. R. Reisinger,” A model for GRIN-SCH-SQW diode lasers”, IEEE J. Quantum Electron., vol. 24, pp. 2191-2214, 1988.
[48] H. Hirayama, Y. Miyake, and M. Asada, “Analysis of current injection efficiency of separate-confinement-heterostructure quantum-film lasers”, IEEE J. Quantum Electron., vol. 28, pp. 68-74, 1992.
[49] S. Adachi, “Material parameters of In1-xGaxAsyP1-y and related binaries”, J. Appl. Phys., vol. 53, pp. 8775-8792, 1982.
[50] E. H. Li, “Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures”, Phys. E, vol. 5, pp. 215-273, 2000.
[51] E. P. O’Reilly and A. R. Adams, “Band-structure engineering in strained semiconductors, IEEE J. Quantum Electron., vol. 30, pp. 366-379, 1994.
[52] A. Kasukawa, R. Bhat, C. E. Zah, M. A. Koza, and T. P. Lee, “Very low threshold current density 1.5-μm GaInAs/AlGaInAs graded-index separate-confinement-heterostructure strained quantum well laser diodes grown by organometallic chemical vapor deposition, Appl. Phys. Lett., vol. 59, pp. 2486-2488, 1991.
[53] N. Holonyak, Jr., R. M. Kolbas, R. D. Dupuis, and P. D. Dapkus, “Quantum-well heterostructure lasers”, IEEE J. Quantum Electron., vol. 16, pp. 170-186, 1980.
[54] M. Silver and E. P. O’Reilly, “Optimization of long wavelength InGaAsP strained quantum-well lasers”, IEEE J. Quantum Electron., vol. 31, pp. 1193-1200, 1995.
[55] C. Y. Lee, W. J. Jiang, M. C. Wu, W. J. Ho, “The influence of InGaP barrier layer on the characteristics of 1.3 μm strain-compensated multiquantum-well InAsP/InP/InGaP laser diodes”, Solid-State Electron., vol. vol. 46, pp. 1389-1394, 2002.
[56] Y. C. Chen and J. M. Liu, “Temperature-dependent polarization behavior of semiconductor lasers”, Appl. Phys. Lett., vol. 45, pp. 731-733, 1984.
[57] D. T. Cassidy and C. S. Adams, “Polarization of the output of InGaAsP semiconductor diode lasers”, IEEE J. Quantum Electron., vol. 25, pp. 1156-1160, 1989.
[58] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica, vol. 34, pp. 149-154, 1967.
[59] P. H. Lei, M. Y. Wu, C. C. Lin, W. J. Ho, and M. C. Wu, “High-power and low-threshold-current operation of 1.3 μm strain-compensated AlGaInAs/AlGaInAs multiple-quantum-well laser diodes”, Solid-State Electron., vol. 46, pp. 2041-2044, 2002.
[60] M. Y. Wu, C. D. Yang, P. H. Lei, M. C. Wu, and W. J. Ho, “Very low threshold current operation of 1.3-μm AlGaInAs/AlGaInAs strain-compensated multiple-quantum-well laser diodes”, Jpn. J. Appl. Phys., vol. 42, pp. L643-L645, 2003.
[61] J. D. Evans, J. G. Simmons, D. A. Thompson, N. Puetz, T. Makino, and G. Chik, “An investigation into the temperature sensitivity of strained and unstrained multiple quantum-well, long wavelength lasers: new insight and methods of characterization”, IEEE J. Sel. Topics Electron., vol. 1, pp. 275-284, 1995.
[62] Y. Sugiyama, T. Inata, T. Fujii, Y. Nakata, S. Muto, and S. Hiyamizu, “Conduction band edge discontinuity of In0.52Ga0.48As/In0.52(Ga1-xAlx)0.48As (0≦x≦1) heterostructures”, Jpn. J. Appl. Phys., vol. 25, pp. L648-L650, 1986.
[63] B. J. Hawdon, T. tűtken, A. Hangleiter, R. W. Glew, and J. E. A. Whiteaway, “Direct comparison of InGaAs/InGaAlAs and InGaAs/InGaAsP quantum well modulators”, Electron. Lett., vol. 29, pp. 705-707, 1993.
[64] P. A. Andrekson, R. F. Kazarinov, N. A. Olsson, T. Tanbun-Ek, and R. A. Logan, “Effect of thermionic electron emission from the active layer on the internal quantum efficiency of InGaAsP lasers operating at 1.3 μm”, IEEE J. Quantum Electron., vol. 30, pp. 219-211, 1994.
[65] P. A. Chen, C. Juang, and C. Y. Chang, “Carrier-induced energy shift in GaAs/AlGaAs multiple quantum well laser diodes”, IEEE J. Quantum Electron., vol. 29, pp. 2607-2618, 1993.
[66] V. Negoita, D. W. Snoke, and K. Eberl, “Stretching quantum wells: A method for trapping free carriers in GaAs heterostructures”, Appl. Phys. Lett., vol. 75, pp. 2059-2061, 1999.
[67] J. E. Bowers, “High speed semiconductor laser design and performance”, Solid-State Electron., vol. 30, pp. 1-11, 1987.
[68] P. H. Lei, M. Y. Wu, M. C. Wu, C. Y. Lee, W. J. Ho, and C. C. Lin, “1.3-μm InAsP multiquantum well laser diodes with the n-type modulation-doped InAsP/InP/InGaP active region”, J. Vac. Sci. Technol. B, vol. 20, pp. 1013-1018, 2002.
[69] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, “GaInNAs: A novel material for long-wavelength-range laser diodes with excellent high-temperature performance”, Jpn. J. Appl. Phys., vol. 35, pp. 1273-1275, 1996.
[70] D. A. Livshits, A. Y. Egorov, and H. Riechert, “8W continuous wave operation of InGaAsN lasers at 1.3μm”, Electron. Lett., vol. 36, pp. 1381-1382, 2000.
[71] C. Monier, M. F. Vilela, I. Serdiukova, and A. Freundlich, “Band discontinuity in strained In(As,P)/InP heterostructures”, App. Phys. Lett., vol. 72, pp. 1587-1589, 1998.
[72] K. Uomi, “Modulation-doped multi-quantum well (MD-MQW) lasers. I. Theory”, Jpn. J. Appl. Phys., vol. 29, pp. 81-87, 1990.
[73] K. Umoi, T. Mishima, and N. Chinone, ” Modulation-doped multi-quantum well (MD-MQW) lasers. II. Experiment”, Jpn. J. Appl. Phys., vol. 29, pp. 88-94, 1990.
[74] S. M. Shank, J. A. Varriano, and G. W. Wicks, “Single quantum well GaAs/AlGaAs separate confinement heterostrcutre lasers with n-type modulation doped cores”, Appl. Phys. Lett., vol. 61, pp. 2851-2853, 1992.