簡易檢索 / 詳目顯示

研究生: 潘宏炫
Pan, Hong-Shiuann
論文名稱: 基於離散哈特利轉換與雙原型濾波器之濾波器組多載波系統
A Filter Bank Multicarrier System Based on the Discrete Hartley Transform and Two Prototype Filters
指導教授: 王晉良
Wang, Chin-Liang
口試委員: 鐘嘉德
Chung, Char-Dir
馮世邁
Phoong, See-May
古聖如
Ku, Sheng-Ju
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 34
中文關鍵詞: 離散哈特利轉換濾波器組多載波系統
外文關鍵詞: Discrete Hartley Transform, Filter Bank Multicarrier
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們探討一種替代性濾波器組多載波 (FBMC) 系統,此系統採用離散哈特利轉換 (discrete Hartley transform;DHT),而非眾所熟知的離散傅立葉轉換 (discrete Fourier transform;DFT)。然而,僅採用單一原型濾波器之DHT-based FBMC系統,於相鄰子載波間會有相當嚴重的干擾問題,因此我們提出一種新的系統模型,改採用經由最佳化方法設計之互為正交的一對原型濾波器,以克服子載波間的干擾問題;我們也針對所提出之系統模型發展對應的多相結構,以降低系統的運算複雜度。為驗證所提出之系統的效能,我們以電腦模擬其位元錯誤率,並與已知兩種DFT-based FBMC系統的模擬結果比較,包含採用正交振幅調變 (quadrature amplitude modulation;QAM) 之DFT-based FBMC/QAM和採用偏移正交振幅調變 (offset QAM) 之DFT-based FBMC/OQAM。雖然所提出之DHT-based FBMC的效能表現略遜於DFT-based FBMC/OQAM,但具有較低的運算複雜度以及較容易推廣至多輸入多輸出環境的優點;相較於DFT-based FBMC/QAM,所提出之DHT-based FBMC則以較低的運算複雜度達到不分軒輊的效能。


    In this thesis, we introduce an alternative filter bank multicarrier (FBMC) system that uses the discrete Hartley transform (DHT), instead of the well-known discrete Fourier transform (DFT). It is shown that DHT-based FBMC with a single prototype filter has severe intrinsic interference between adjacent subcarriers. To eliminate such inter-carrier interference, we apply a pair of orthogonal prototype filters to the proposed DHT-based FBMC system, where an optimization problem is formulated for appropriate selection of the prototype filters. Also, we derive polyphase implementation structures for the proposed DHT-based FBMC system and evaluate the corresponding computational complexity. Moreover, we provide some simulation results to compare bit-error-rate (BER) performance of the proposed DHT-based FBMC scheme and two existing DFT-based FBMC methods, including that using quadrature amplitude modulation (FBMC/QAM) and that using offset QAM (FBMC/OQAM). Although the proposed approach achieves worse BER performance than FBMC/OQAM, it involves lower computational complexity and is much more easily extended to MIMO scenarios. In contrast to FBMC/QAM, the proposed one achieves comparable BER performance with reduced complexity.

    Abstract i Contents ii List of Figures iii List of Tables iv I. Introduction 1 II. System Model and Problem Formulations 4 A. General DHT-Based FBMC System Model 4 B. Problem Formulations 8 III. Proposed Methods 10 A. Proposed DHT-Based FBMC System with Two Prototype Filters 10 B. Prototype Filters Selection and Orthogonality Conditions 14 C. Derivation of the Polyphase Structure 16 D. Data Detection Methods 20 E. Complexity Comparison 23 IV. Simulation Results 26 V. Conclusion 32 References 33

    [1] A. I. Pérez-Neira, M. Caus, R. Zakaria, D. L. Ruyet, E. Kofidis, M. Haardt, X. Mestre, and Y. Cheng, “MIMO signal processing in offset-QAM based filter bank multicarrier systems,” IEEE Trans. Signal Process., vol. 64, no. 21, pp. 5733–5762, Nov. 2016.
    [2] B. F. Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92–112, May. 2011.
    [3] A. Viholaninen, M. Bellanger, and M. Huchard, “PHYDYAS–Physical layer for dynamic access and cognitive radio,” Tech. Rep. D5.1, EU FP7-ICT Future Networks, Jan. 2009. Project website: http//www.ict-phydyas.org/.
    [4] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.
    [5] C. -X. Wang, F. Haider, X. Gao, X. -H. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag., vol. 52, no. 2, pp. 122–130, Feb. 2014.
    [6] F. Boccardi, R. W. Heath Jr., A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 74–80, Feb. 2014.
    [7] R. Zakaria, D. Le Ruyet, and M. Bellanger, “Maximum likelihood detection in spatial multiplexing with FBMC,” in Proc. IEEE Eur. Wireless Conf., Lucca, Italy, Apr. 2010, pp. 1038–1041.
    [8] M. Renfors, T. Ihalainen, and T. H. Stitz, “A block-Alamouti scheme for filter bank based multicarrier transmission,” in Proc. IEEE Eur. Wireless Conf., Lucca, Italy, Apr. 2010, pp. 1031–1037.
    [9] X. Mestre, M. Majoral, and S. Pfletschinger, “An asymptotic approach to parallel equalization of filter bank based multicarrier signals,” IEEE Trans. Signal Process., vol. 61, no. 14, Jul. 2013.
    [10] X. Mestre and D. Gregoratti, “Parallelized structures for MIMO FBMC under strong channel frequency selectivity,” IEEE Trans. Signal Process., vol. 64, no. 5, pp. 1200–1215, Mar. 2016.
    [11] F. Rottenberg, X. Mestre, F. Horlin, and J. Louveaux, “Single-tap precoders and decoders for multiuser MIMO FBMC-OQAM under strong channel frequency selectivity,” IEEE Trans. Signal Process., vol. 65, no. 3, Feb. 2017.
    [12] Y. H. Yun, C. Kim, K. Kim, Z. Ho, B. Lee, and J.-Y. Seol, “A new waveform enabling enhanced QAM-FBMC systems,” in Proc. Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Stockholm, Sweden, Jun. 2015, pp. 116–120.
    [13] H. Nam, M. Choi, S. Han, C. Kim, S. Choi, and D. Hong, “A new filter-bank multicarrier system with two prototype filters for QAM symbols transmission and reception,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 5998–6009, Sep. 2016.
    [14] C. Kim, Y. H. Yun, K. Kim, and J.-Y. Seol, “Introduction to QAM-FBMC: From waveform optimization to system design,” IEEE Commun. Mag., vol. 54, no. 11, pp. 63–73, Nov. 2016.
    [15] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, New Jersey, USA: Prentice-Hall, 1993.
    [16] C. -T. Tuan, “A discrete Hartley transform based filter bank multicarrier transmission system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2016.
    [17] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002.
    [18] R. N. Bracewell, “Discrete Hartley transform,” J. Opt. Soc. Amer., vol. 73, pp. 1832–1835, Dec. 1983.
    [19] K. Jones, The Regularized Fast Hartley Transform. Dordrecht, The Netherlands: Springer, 2010.
    [20] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, New Jersey, USA: Prentice-Hall, 1993.
    [21] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, Maryland, USA: Johns Hopkins Univ. Press, 1996.
    [22] H. V. Sorensen, D. L. Jones, C. S. Burrus, and M. T. Heideman, “On computing the discrete Hartley transform,” IEEE Trans. Acoust., Speech, Signal Process., vol. 33, no. 4, pp. 1231–1238, Oct. 1985.
    [23] Guidelines for Evaluations of Radio Transmission Technologies for IMT-2000, document. ITU-R M.1225, 1997.
    [24] J. Mao, C.-L. Wang, L. Zhang, C. He, P. Xiao, K. Nikitopoulos, “A DHT-based multicarrier modulation system with pairwise ML detection,” in Proc. IEEE Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Montreal, Quebec, Canada, Oct. 2017.

    QR CODE