簡易檢索 / 詳目顯示

研究生: 林慕涵
論文名稱: 強度調控放射治療線上病患治療劑量驗證系統
An on-line patient dose verification system for IMRT
指導教授: 董傳中
Chuan-Jong Tung
李宗其
Chung-Chi Lee
趙自強
Tsi-Chian Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 63
中文關鍵詞: 電子式影像擷取裝置強度調控放射治療蒙地卡羅方法
外文關鍵詞: EPID, IMRT, Monte Carlo
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著治療技術的進步,放射治療的品質保證日益受重視,本研究結合電子式照野影像擷取系統(EPID)以及蒙地卡羅模擬程式發展一套獨立於電腦治療計畫系統的強度調控放射治療線上病患治療劑量驗證系統;利用EPID得到病患穿透劑量分布,並與蒙地卡羅模擬計算所得EPID處的穿透劑量分布做相比,完成劑量驗證動作。首先,對於EPID進行劑量特性研究,確認適用於劑量驗證後,再進一步將其應用於強度調控放射治療劑量驗證。蒙地卡羅模擬部份則是利用EPID在病患治療前所取得的影像推得治療當時的通量分布去進行強度調控放射治療病患穿透劑量模擬;而後將EPID與蒙地卡羅模擬所得到的病患穿透劑量分布作比較。研究結果顯示,EPID不論對於絕對劑量或絕對劑量率的反應皆呈線性,且靜態照野穿透劑量分布驗證結果也確定EPID可應用於劑量驗證;而對於強度調控放射治療穿透劑量驗證結果則肯定了本方法在強度調控放射治療劑量驗證的可行性。


    第一章緒論 1.1前言 1.2文獻回顧 1.3研究目的 1.4論文架構 第二章材料與方法 2.1強度調控放射治療劑量驗證系統 2.2電子式影像擷取裝置 2.2.1電子式影像擷取裝置介紹 2.2.2電子式影像擷取裝置劑量特性 2.2.3利用電子式影像擷取裝置進行劑量量測 2.3蒙地卡羅穿透劑量驗證系統 2.3.1蒙地卡羅方法 2.3.2蒙地卡羅方法穿透劑量模擬計算 2.4強度調控放射治療劑量驗證 第三章結果與討論 3.1電子式影像擷取裝置劑量特性 3.1.1外加增建厚度 3.1.2絕對劑量反應曲線 3.1.3絕對劑量率反應曲線 3.1.4個別像素劑量反應校正 3.2靜態均勻照野驗證結果 3.3蒙地卡羅方法穿透劑量模擬計算 3.3.1距離對通量分布的影響 3.3.2 Kdose kernel 3.4強度調控放射治療穿透劑量驗證結果 3.4.1相對劑量比較 3.4.2絕對劑量比較 第四章結論

    1 ICRU (International Commission on Radiation Units and Measurement): Use of computers in external beam radiotherapy procedure with high-energy photons and electrons. ICRU Report 42, Bethesda, 1987.

    2 G. J. Kutcher, L. Coia, et al. Comprehensive QA for radiation oncology: Report of AAPM radiation Therapy Committee Task Group 40. Med Phys 21. 581-618,1994.

    3 B. J. M. Heijmen et al., ‘‘Portal Dose Measurement in Radiotherapy Using an Electronic Portal Imaging Device (Epid)’’ Phys. Med. Biol. 40 (11), 1943–1955 1995.

    4 M. Essers et al., ‘‘Dosimetric characteristics of a liquid-filled electronic portal imaging device,’’Int. J. Radiate. Oncol., Biol., Phys., 33 (5), 1265-1272, 1995.

    5 D. A. Low et al., ‘‘Commissioning and periodic quality assurance of a clinical electronic portal imaging device,’’Int. J. Radiate. Oncol., Biol., Phys., 34 (1), 117-123, 1995.

    6 R. Boellaard et al., ‘‘The dose response relationship of a liquid- filled electronic portal imaging device,’’ Med. Phys. 23 (9), 1601–1611, 1996.

    7 V. G . M. Althof et al., ‘‘Physical characteristics of a commercial electronic portal imaging device,’’ Med. Phys. 23 (11), 1845–1855, 1996.

    8 M. Essers et al., ‘‘Transmission dosimetry with a liquid-filled electronic portal imaging device,’’ Int. J. Radiat. Oncol., Biol., Phys. 34 (4), 931–941 , 1996.

    9 P. Munro and D. C. Bouius, ‘‘X-ray quantum limited portal imaging using amorphous silicon flat-panel arrays,’’ Med. Phys. 25 (5), 689–702, 1998.

    10 H. Keller, M. Fix, and P. Ruegsegger, ‘‘Calibration of a portal imaging device for high-precision dosimetry: A Monte Carlo study,’’ Med. Phys. 25 (10), 1891–1902 , 1998.

    11 H. Parsaei et al., ‘‘The use of an electronic portal imaging system to measure portal dose and portal dose profiles’’ Med. Phys. 25 (10), 1903–1909, 1998.

    12 K. L. Pasma et al., ‘‘Accurate portal dose measurement with a fluoroscopic electronic portal imaging device (EPID) for open and wedged beams and dynamic multileaf collimation,’’ Phys. Med. Biol. 43 (8), 2047–2060, 1998.

    13 E. B. Podgorsak et al., ‘‘Verification of segmented beam delivery using a commercial electronic portal imaging device,’’ Med. Phys. 26 (5), 737–742, 1999.

    14 K. L. Pasma et al., ‘‘Dosimetric verification of intensity modulated beams produced with dynamic multileaf collimation using an electronic portal imaging device,’’ Med. Phys. 26 (11), 2373–2378, 1999.

    15 J. Chang et al., ‘‘Relative profile and dose verification of intensity-modulated radiation therapy ’’ Int. J. Radiate. Oncol., Biol., Phys., 47 (1), 231-240, 1999.

    16 Varian Medical Systems, ‘‘PortalVision aS500 Rel.6, Reference Manual’’ Palo Alto, CA, 2000.

    17 B. M. C. McCurdy and S. Pistorius, ‘‘A two-step algorithm for predicting portal dose images in arbitrary detectors,’’ Med. Phys. 27(9), 2109–2116, 2000.

    18 M. G. Herman et al., ‘‘Clinical use of electronic portal imaging: Report of AAPM radiation therapy committee Task Group 58,’’ Med. Phys. 28 (5), 712–737 , 2001.

    19 B. M. C. McCurdy, K. Luchka, and S. Pistorius, ‘‘Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device,’’ Med. Phys. 28 (6), 911–924, 2001.

    20 J. H. Chang et al., ‘‘An iterative EPID calibration procedure for dosimetric verification that considers the EPID scattering factor,’’ Med. Phys. 28 (11), 2247–2257, 2001.

    21 M. Partridge, M. Ebert, and B. M. Hesse, ‘‘IMRT verification by three dimensional dose reconstruction from portal beam measurements,’’ Med. Phys. 29 (8), 1847–1858, 2002.

    22 E. E. Grein et al. ‘‘ An investigation of a new amorphous silicon electronic portal imaging device for transit dosimetry,’’ Med. Phys. 29 (10), 2262–2268, 2002.

    23 P. B Greer et al., “Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy,” Med. Phys. 30 (7), 1618–1627, 2003.
    24 B. Warkentin et al., “Dosimetric IMRT verification with a flat-panel EPID,” Med. Phys. 30 (12), 3143–3155, 2003.

    25 J. V. Siebers et al., “Monte Carlo computation of dosimetric amorphous silicon electronic portal images,” Med. Phys. 31 (7), 2135–2146, 2004.

    26 林堉烽, 以蒙地卡羅方法驗證強度調控放射治療的劑量分布, 國立清華大學碩士論文, 2004.

    27 S. Steciw et al., “Three-dimensional IMRT verification with a flat panel EPID,” Med. Phys. 32 (2), 600–612, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE