簡易檢索 / 詳目顯示

研究生: 葉佳宜
Yeh, Jia-Yi
論文名稱: 功能性磁振造影中個人化血流動力反應曲線的評估
Estimation of subject-specific hemodynamic response in fMRI
指導教授: 莊克士
Chuang, Keh-Shih
口試委員: 王福年
Wang, Fu-Nien
莊克士
Chuang, Keh-Shih
陳佳如
Chen, Chia-Ju
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 57
中文關鍵詞: 功能性磁振造影時空群聚分析資料推論分析血流動力反應
外文關鍵詞: hemodynamic response
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在功能性磁振造影活化分析上,基於一般線性假設下的典型血流動力反應模型已被廣為使用。典型模型在使用上對於信號外形或時間參數,如延遲時間、峰值時間或持續時間等,在不同個體之間往往採用固定式的設定,然而不同人或不同腦區之間的信號表現已被證實是不盡相同的,因此統一的典型血流動力反應模型對於腦功能活化分析使用上並不夠彈性,以至於降低腦活化偵測靈敏度。本研究中,我們透過資料推論分析(data-driven)方式,建立出更能貼切表達出個人腦血流變化的個人化血流動力反應曲線,以提高腦功能活化偵測敏感度。
    一開始,透過空間-空間群聚分析(spatial temporal clustering analysis,STCA)對時間序列分群,根據活化機率分佈挑選出包含活化資訊區域。再者,每個群聚經由空間相關性與肯氏和諧係數(Kendall’s coefficient of concordance)兩個純化過程排除干擾信號,提高信號一致性。最後計算最大活化機率群聚與其信號以建立活化區的個人化血動力反應曲線。
    結果顯示出每個人之間的腦功能反應對於相同刺激,不論是在波形或是反應時間上都有差異。其中對於動作刺激的反應延遲時間(onset latency)而言,典型反應模型採用的固定延遲時間明顯長於個人化血流動力反應曲線所捕捉的真實時間長度約1~2 TR。另外,根據腦活化圖,對於活化位置分佈(spatial extent)或是 t 值範圍而言,與典型反應模型結果相較之下,本法所得結果有更顯著的統計活化表現。
    本研究以有效的資料推論分析,建立出個人化血流動力反應曲線。不僅能更真實地表達出每個人腦功能信號反應上的差異,增加分析上的個人適應性,提高活化偵測靈敏度。


    In the analysis of fMRI, the canonical hemodynamic response model (canonical HRM) based on the hypothesis of the general linear model (GLM) is widely used. However, the canonical HRM, which used the fixed response parameters of onset latency, time-to-peak and duration, limits the flexibility of statistical analysis and results in the reduction of sensitivity for the brain activity detection. In this work, we introduced a method for estimating the subject-specific hemodynamic response without a prior paradigm. First, according to the spatial temporal clustering analysis (STCA), the clusters of potential activated region were selected. Second, each cluster was purified iteratively to increase the concordance of the time courses. Finally, the specific estimated response was computed from the time courses of the cluster being activated. The results show that the response shape and the time parameters of specific response across subjects were different, and the onset latency of motor stimulation of canonical HRM was slower than the specific HRM one about 1 to 2 TR. In addition, the activation maps presented more significant statistical results for the activated voxels and the T value. We conclude that the specific HRM is adaptive to signal variety due to subjects even if the temporal information of stimulation is unknown, and it enhances the sensitivity of the brain activation detection in contrast to the canonical HRM.

    中文摘要….………………………………………………………………………………I 英文摘要………………………………………………………………………………III 誌謝…………………………………………………………………………………………IV 目錄……………………………………………………………………………………………V 圖表目錄………………………………………………………………………………VII 第一章 緒論…………………………………………………………………………1 1.1 研究背景…………………………………………………………………1 1.2 研究動機與目的……………………………………………………3 1.3 論文架構…………………………………………………………………4 第二章 原理…………………………………………………………………………5 2.1 BOLD fMRI…………………………………………………………………5 2.1.1 血氧濃度對比………………………………………………………5 2.1.2 血液動力學反應…………………………………………………6 2.2 數據前處理……………………………………………………………………8 2.3 fMRI 資料分析………………………………………………10 2.3.1 假說推論分析………………………………………………………10 2.3.2 資料推論分析………………………………………………………13 2.3.2.1組成分解法………………………………………………………………14 2.3.2.2群聚分析…………………………………………………………………15 第三章 材料與方法……………………………………………………………19 3.1 活化信號的空間域分群…………………………………………………20 3.1.1 空間-時間群聚分析分群…………………………………………20 3.1.2 多次性空間-時間群聚分析………………………………………22 3.1.3 歧異點信號的過濾………………………………………………………23 3.2 群聚純化……………………………………………………………………………24 3.2.1 空間相關性純化…………………………………………………………24 3.2.2 肯氏和諧係數純化……………………………………………………25 3.3 最適個人化血流動力反應曲線的建立…………………………26 3.4 刺激任務設計與數據收集………………………………………………26 第四章 研究結果……………………………………………………………………29 4.1 多次性分群………………………………………………………………………30 4.2 群聚純化……………………………………………………………………………31 4.3 個人化血流動力反應曲線………………………………………………33 4.4 腦區活化圖…………………………………………………………………………37 4.5 ROI 測試…………………………………………………………………………41 第五章 討論………………………………………………………………………………45 5.1 分群正確性的影響……………………………………………………………46 5.2 群聚純化………………………………………………………………………………47 5.3 最適血流反應曲線建立……………………………………………………49 5.4 個人化血動力反應曲線與典型反應曲線比較………………50 5.5 腦活化圖的比較…………………………………………………………………51 5.6 ROI 測試…………………………………………………………………………52 第六章 結論………………………………………………………………………………53 參考文獻……………………………………………………………………………………………54

    Bandettini, P. A., E. C. Wong, et al. (1994). "Spin-echo and gradient-echo epi of human brain activation using bold contrast: A comparative study at 1.5 T." NMR in Biomedicine 7(1-2): 12-20.
    Baumgartner, R., C. Windischberger, et al. (1998). "Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis." Magnetic resonance imaging 16(2): 115-125.
    Baumgartner, R., R. Somorjai, et al. (1999). "Assessment of cluster homogeneity in fMRI data using Kendall’s coefficient of concordance." Magnetic resonance imaging 17(10): 1525-1532.
    Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms, Kluwer Academic Publishers.
    Birn, R. M., Z. S. Saad, et al. (2001). "Spatial heterogeneity of the nonlinear dynamics in the FMRI BOLD response." Neuroimage 14(4): 817-826.
    Brodmann, K. and L. Garey (2006). Brodmann's Localisation in the cerebral cortex: the principles of comparative localisation in the cerebral cortex based on the cytoarchitectonics, Springer Verlag.
    Buckner, R. L., J. Goodman, et al. (1998). "Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI." Neuron 20(2): 285-296.
    Cao, J. and K. Worsley (1999). "The geometry of correlation fields with an application to functional connectivity of the brain." The Annals of Applied Probability 9(4): 1021-1057.
    Duyn, J. H., C. T. W. Moonen, et al. (1994). "Inflow versus deoxyhemoglobin effects in bold functional MRI using gradient echoes at 1.5 T." NMR in Biomedicine 7(1-2): 83-88.
    Fridriksson, J., Rorden, C., et al. (2006). "Measuring the hemodynamic response in chronic hypoperfusion." Neurocase 12 (3): 146–150.
    Friston, K. J., A. P. Holmes, et al. (1994). "Statistical parametric maps in functional imaging: A general linear approach." Human Brain Mapping 2(4): 189-210.
    Friston, K. J., A. P. Holmes, et al. (1995). "Analysis of fMRI time-series revisited." Neuroimage 2(1): 45-53.
    Friston, K. J., W. Penny, et al. (2002). "Classical and Bayesian Inference in Neuroimaging: Theory." Neuroimage 16(2): 465-483.
    Handwerker, D. A., J. M. Ollinger, et al. (2004). "Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses." Neuroimage 21(4): 1639-1651.
    Hartigan, J. A. (1975). Clustering Algorithms (Probability & Mathematical Statistics), John Wiley & Sons Inc.
    Huettel, S. A., A. W. Song, et al. (2004). Functional magnetic resonance imaging, Sinauer Associates Sunderland, MA.
    Josephs, O., R. Turner, et al. (1997). "Event-related fMRI." Human Brain Mapping 5(4): 243-248.
    Lee, J. H., R. Durand, et al. (2010). "Global and local fMRI signals driven by neurons defined optogenetically by type and wiring." Nature 465(7299): 788-792.
    Liu, Y., J. H. Gao, et al. (2000). "The temporal response of the brain after eating revealed by functional MRI." Nature 405(6790): 1058-1062.
    Marrelec, G., H. Benali, et al. (2003). "Robust Bayesian estimation of the hemodynamic response function in event‐related BOLD fMRI using basic physiological information." Human Brain Mapping 19(1): 1-17.
    McKeown, M. J. and T. J. Sejnowski (1998). "Independent component analysis of fMRI data: examining the assumptions." Human Brain Mapping 6(5-6): 368-372.
    Menon, R. S., S. Ogawa, et al. (1995). "BOLD Based Functional MRI at 4 Tesla Includes a Capillary Bed Contribution: Echo-Planar Imaging Correlates with Previous Optical Imaging Using Intrinsic Signals." Magnetic Resonance in Medicine 33(3): 453-459.
    Miezin, F., L. Maccotta, et al. (2000). "Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing." Neuroimage 11(6): 735-759.
    Ogawa, S., R. S. Menon, et al. (1993). "Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model." Biophysical Journal 64(3): 803-812.
    Peng, S. L., C. C. Chuang, et al. (2009). "Spatial–temporal clustering analysis in functional magnetic resonance imaging." Physics in medicine and biology 54: 7301.
    Postle, B. R., E. Zarahn, et al. (2000). "Using event-related fMRI to assess delay-period activity during performance of spatial and nonspatial working memory tasks." Brain Research Protocols 5(1): 57-66.
    Roc, A.C., Wang, et al. (2006). "Altered hemodynamics and regional cerebral blood flow in patients with hemodynamically significant stenosis." Stroke 37: 382–387.
    Roy, C. S. and C. Sherrington (1890). "On the regulation of the blood-supply of the brain." The Journal of physiology 11(1-2): 85.
    Saad, Z. S., K. M. Ropella, et al. (2001). "Analysis and use of FMRI response delays." Human Brain Mapping 13(2): 74-93.
    Sun, F. T., L. M. Miller, et al. (2004). "Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data." Neuroimage 21(2): 647-658.
    Windischberger, C., M. Barth, et al. (2003). "Fuzzy cluster analysis of high-field functional MRI data." Artificial Intelligence in Medicine 29(3): 203-223.
    Worsley, K. J. and K. J. Friston (1995). "Analysis of fMRI time-series revisited—again." Neuroimage 2(3): 173-181.
    Yee, S. H. and J. H. Gao (2002). "Improved detection of time windows of brain responses in fMRI using modified temporal clustering analysis." Magnetic resonance imaging 20(1): 17-26.


    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE