研究生: |
易天昱 Yi, Tien-Yu |
---|---|
論文名稱: |
電化學活化機制探討及於高電壓有機相超級電容器之應用 Understanding and applications of electrochemical activation process in high-voltage organic supercapacitors |
指導教授: |
胡啟章
Hu, Chi-Chang |
口試委員: |
衛子健
Weu, Tzu-Chien 溫添進 Wen, Ten-Chin 張仍奎 Chang, Jeng-Kuei 王復民 Wang, Fu-Ming |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 183 |
中文關鍵詞: | 超級電容器 、鋰離子電容器 、電化學活化 、碳材料 |
外文關鍵詞: | supercapacitor, lithium-ion capacitor, electrochemical activation, carbon material |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電力為本世紀不可或缺之能量形式之一,而近年來超級電容器做以儲能裝置引起相當大的注目,其擁有具優勢的功率密度表現,但能量密度卻遠不及電池。本研究主旨便在於發展超高電壓超級電容器,研發高能量密度之電化學儲能裝置。為了提升電容電壓,裝置中的任何部分皆須擁有相當的電化學穩定性,其中以電解液和電極材料為現今研究的主要方向。由研究可知,低孔洞性之碳材料有較高的化學穩定性,因此低比表面積的碳材可成為取代傳統碳材如活性碳等的選擇之一。另一方面,電化學活化為一種增進低比表面積碳材表現,且能直接在電解液中直接執行的方法,因此兩項技術的結合將有機會達成提高超電容能量密度之目標。
電化學活化的活化機制已由前人研究證實:為施予裝置足夠偏壓,使離子嵌入碳材層間,造成層內空間永久擴張,增加其活性位。但活化結果與電極材料、電解液等之關聯性尚未明確,深入研究將可進一步提升活化效果。因此,本研究先於第三章中探討材料表面改質、碳材之結晶度與缺陷密度、黏著劑種類以及電解液濃度,對於電化學活化之影響。選擇膨脹石墨(EMCMB)以及鹼活化軟碳(ASC)作為主要電極材料,搭配電化學測試以及材料鑑定,建立此些材料之材料特性與電化學性能的相對關係。而第四章則延續前段電化學活化之研究結果,將可電化學活化之EMCMB應用於高電壓超級電容器中,分別於TEABF4/ PC電解液中組成4V對稱式超級電容器以及於LiPF6/ EC:DMC電解液中搭配高容量軟碳成為4.2V混和式的鋰離子超級電容器。
Energy storage is one of the most important techniques for the development of electronics and next generation transportations. Supercapacitor is one of the energy storage devices utilizing in high-power applications. However, the applicability of supercapacitors is restricted by their insufficient energy density. To enhance the energy of capacitors, either capacitance or voltage should be increased. Therefore, this research focuses on the development of high voltage capacitors. Electrochemical activation and low-surface-area carbon are introduced to produce electrodes with high capacitance and good electrochemical stability.
The background of capacitors and the mechanism of electrochemical activation are briefly discussed in chapter 1. However, the relation between electrochemical activation and material properties, such as crystallinity of carbon active materials, viscoelasticity of binders, and concentration of electrolyte, has not been discussed. Thus, in chapter 3, expanded mesocarbon microbeads (EMCMB) and alkali treated soft carbon (ASC) are utilized to examine the structural effect on the activation process. The results of EMCMB with various types of binders, such as poly(vinylidene fluoride) (PVdF), carboxymethyl cellulose (CMC), poly(acrylic acid) (PAA), and polyurethane-polyacrylic acid (PUPAH) are compared as well. After all, the applications of electrochemically activated carbon materials are demonstrated in chapter 4. A 4 V, symmetric, EMCMB-based capacitor and a 4.2 V hybrid capacitor, consisted of EMCMB and high-energy soft carbon, are successfully operated in 1 M TEABF4/ PC and 1 M LiPF6/ EC: DMC, respectively.
[1] S.U. Falk, A.J. Salkind, Alkaline storage batteries, (1969).
[2] U. Köhler, C. Antonius, P. Bäuerlein, Advances in alkaline batteries, Journal of Power Sources, 127 (2004) 45-52.
[3] A. Fleischer, J.J. Lander, Zinc-silver oxide batteries, AIR FORCE AERO PROPULSION LAB WRIGHT-PATTERSON AFB OHIO, 1971.
[4] D.F. Smith, J.A. Gucinski, Synthetic silver oxide and mercury-free zinc electrodes for silver–zinc reserve batteries, Journal of power sources, 80 (1999) 66-71.
[5] R. Dumarey, R. Dams, Selective gathering of mercury‐batteries: A possible way to lower mercury emissions from a municipal waste incineration plant, Environmental Technology, 6 (1985) 149-152.
[6] A.J. Salkind, S. Ruben, Mercury Batteries for Pacemakers and Other Implantable Devices, Batteries for Implantable Biomedical Devices, Springer1986, pp. 261-274.
[7] Z.M. Salameh, M.A. Casacca, W.A. Lynch, A mathematical model for lead-acid batteries, IEEE Transactions on Energy Conversion, 7 (1992) 93-98.
[8] M. Ceraolo, New dynamical models of lead-acid batteries, IEEE transactions on Power Systems, 15 (2000) 1184-1190.
[9] A. Taniguchi, N. Fujioka, M. Ikoma, A. Ohta, Development of nickel/metal-hydride batteries for EVs and HEVs, Journal of Power Sources, 100 (2001) 117-124.
[10] G. Majeau-Bettez, T.R. Hawkins, A.H. Strømman, Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles, Environmental science & technology, 45 (2011) 4548-4554.
[11] K. Beltrop, P. Meister, S. Klein, A. Heckmann, M. Gruenebaum, H.-D. Wiemhöfer, M. Winter, T. Placke, Does size really matter? New insights into the intercalation behavior of anions into a graphite-based positive electrode for dual-ion batteries, Electrochimica acta, 209 (2016) 44-55.
[12] H. Zhao, Z.H. Wang, P. Lu, M. Jiang, F.F. Shi, X.Y. Song, Z.Y. Zheng, X. Zhou, Y.B. Fu, G. Abdelbast, Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design, Nano letters, 14 (2014) 6704-6710.
[13] G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, W. Wilcke, Lithium− air battery: promise and challenges, The Journal of Physical Chemistry Letters, 1 (2010) 2193-2203.
[14] Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, Z. Chen, Highly active and durable core–corona structured bifunctional catalyst for rechargeable metal–air battery application, Nano letters, 12 (2012) 1946-1952.
[15] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific2011, pp. 138-147.
[16] W. Gu, G. Yushin, Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide‐derived carbon, zeolite‐templated carbon, carbon aerogels, carbon nanotubes, onion‐like carbon, and graphene, Wiley Interdisciplinary Reviews: Energy and Environment, 3 (2013) 424-473.
[17] A. von Wald Cresce, M. Gobet, O. Borodin, J. Peng, S.M. Russell, E. Wikner, A. Fu, L. Hu, H.-S. Lee, Z. Zhang, Anion solvation in carbonate-based electrolytes, The Journal of Physical Chemistry C, 119 (2015) 27255-27264.
[18] X. Hu, K. Tseng, M. Srinivasan, Optimization of battery energy storage system with super-capacitor for renewable energy applications, 8th International Conference on Power Electronics-ECCE Asia, IEEE, 2011, pp. 1552-1557.
[19] H. Li, J. Lang, S. Lei, J. Chen, K. Wang, L. Liu, T. Zhang, W. Liu, X. Yan, A High‐Performance Sodium‐Ion Hybrid Capacitor Constructed by Metal–Organic Framework–Derived Anode and Cathode Materials, Advanced Functional Materials, 28 (2018) 1800757.
[20] K. Bharath, G. Sivaraman, B. Harivishnu, M.P. Haridas, Design and implementation of electric speed booster and kinetic energy recovery system for electric vehicle, 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), IEEE, 2017, pp. 1-6.
[21] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, 38 (2009) 2520-2531.
[22] Y.T. Ju, M.-Y. Cho, M.-H. Kim, J.-W. Lee, S.-M. Park, B.H. Choi, K.C. Roh, The reduction effect of oxygen functional groups in activated carbon for supercapacitor electrode, Journal of Ceramic Processing Research, 13 (2012) s159~s162.
[23] I.T. Kim, M. Egashira, N. Yoshimoto, M. Morita, Combination of alkali-treated soft carbon and activated carbon fiber electrodes for asymmetric electric double-layer capacitor, Electrochemistry, 80 (2012) 415-420.
[24] J.M.D. Tascón, Novel Carbon Adsorbents, Elsevier Science2012.
[25] A.M. Zardkhoshoui, M.M. Ashtiani, M. Sarparast, S.S.H. Davarani, Enhanced the energy density of supercapacitors via rose-like nanoporous ZnGa2S4 hollow spheres cathode and yolk-shell FeP hollow spheres anode, Journal of Power Sources, 450 (2020) 227691.
[26] X. Jian, S.Y. Liu, Y.Q. Gao, W.L. Zhang, W. He, A. Mahmood, C.M. Subramaniyam, X.L. Wang, N. Mahmood, S.X. Dou, Facile synthesis of three-dimensional sandwiched MnO2@ GCs@ MnO2 hybrid nanostructured electrode for electrochemical capacitors, ACS applied materials & interfaces, 9 (2017) 18872-18882.
[27] A.M. Zardkhoshoui, S.S.H. Davarani, Formation of graphene-wrapped multi-shelled NiGa 2 O 4 hollow spheres and graphene-wrapped yolk–shell NiFe 2 O 4 hollow spheres derived from metal–organic frameworks for high-performance hybrid supercapacitors, Nanoscale, 12 (2020) 1643-1656.
[28] M.R. Wertheimer, J.E. Klemberg-Sapieha, J. Cerny, S. Liang, Modification of Active Carbon by Hydrophobic Plasma Polymers: II Fabric Substrates, Plasmas and Polymers, 3 (1998) 151-163.
[29] M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chemistry of Materials, 16 (2004) 3184-3190.
[30] Y.F. Ma, H.C. Chang, M. Zhang, Y.S. Chen, Graphene‐based materials for lithium‐ion hybrid supercapacitors, Advanced Materials, 27 (2015) 5296-5308.
[31] M. Morita, R. Arizono, N. Yoshimoto, M. Egashira, On the electrochemical activation of alkali-treated soft carbon for advanced electrochemical capacitors, Journal of Applied Electrochemistry, 44 (2014) 447-453.
[32] H.D. Yoo, J.H. Jang, K. Cho, Y.P. Zheng, J.H. Ryu, S.M. Oh, Effects of interlayer distance and van der Waals energy on electrochemical activation of partially reduced graphite oxide, Electrochimica Acta, 173 (2015) 827-833.
[33] M.M. Hantel, R. Nesper, A. Wokaun, R. Kötz, In-situ XRD and dilatometry investigation of the formation of pillared graphene via electrochemical activation of partially reduced graphite oxide, Electrochimica Acta, 134 (2014) 459-470.
[34] H.K. Bok, S.M. Oh, Electrochemical activation of expanded graphite electrode for electrochemical capacitor, Journal of The Electrochemical Society, 155 (2008) A685-A692.
[35] T.Y. Yi, Z.F. He, J.A. Wang, C.C.M. Ma, C.C. Hu, Communication—Introduction of Polyurethane-Polyacrylic Acid as a Binder for Electrochemical Activation of Expanded Mesocarbon Microbeads in Organic Supercapacitors, Journal of The Electrochemical Society, 166 (2019) A1668.
[36] F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and Electrolytes for Advanced Supercapacitors, Advanced Materials, 26 (2014) 2219-2251.
[37] T. Osaka, X.J. Liu, M. Nojima, T. Momma, An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder, Journal of the Electrochemical Society, 146 (1999) 1724.
[38] J. Gamby, P. Taberna, P. Simon, J. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, Journal of power sources, 101 (2001) 109-116.
[39] M.M. Hantel, T. Kaspar, R. Nesper, A. Wokaun, R. Kötz, Partially reduced graphite oxide for supercapacitor electrodes: Effect of graphene layer spacing and huge specific capacitance, Electrochemistry communications, 13 (2011) 90-92.
[40] H.D. Yoo, Y. Park, J.H. Ryu, S.M. Oh, Electrochemical activation behaviors studied with graphitic carbon electrodes of different interlayer distance, Electrochimica Acta, 56 (2011) 9931-9936.
[41] Y.W. Chi, C.C. Hu, H.H. Shen, K.P. Huang, New approach for high-voltage electrical double-layer capacitors using vertical graphene nanowalls with and without nitrogen doping, Nano letters, 16 (2016) 5719-5727.
[42] V. Ruiz, C. Blanco, E. Raymundo-Piñero, V. Khomenko, F. Béguin, R. Santamaría, Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors, Electrochimica Acta, 52 (2007) 4969-4973.
[43] Z.S. Wu, D.W. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors, Advanced Functional Materials, 20 (2010) 3595-3602.
[44] L. Deng, J. Wang, G. Zhu, L. Kang, Z. Hao, Z. Lei, Z. Yang, Z.-H. Liu, RuO2/graphene hybrid material for high performance electrochemical capacitor, Journal of Power Sources, 248 (2014) 407-415.
[45] D. Belanger, X. Ren, J. Davey, F. Uribe, S. Gottesfeld, Characterization and long‐term performance of polyaniline‐based electrochemical capacitors, Journal of the Electrochemical Society, 147 (2000) 2923.
[46] J.H. Park, O.O. Park, Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes, Journal of Power Sources, 111 (2002) 185-190.
[47] Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, 332 (2011) 1537.
[48] Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, Z. Fan, Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors, Carbon, 67 (2014) 119-127.
[49] T.s. He, X.L. Meng, J.P. Nie, Y.J. Tong, K. Cai, Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors, ACS applied materials & interfaces, 8 (2016) 13865-13870.
[50] C. Lian, K. Liu, K.L. Van Aken, Y. Gogotsi, D.J. Wesolowski, H. Liu, D. Jiang, J. Wu, Enhancing the capacitive performance of electric double-layer capacitors with ionic liquid mixtures, ACS Energy Letters, 1 (2016) 21-26.
[51] A. Balducci, R. Dugas, P.L. Taberna, P. Simon, D. Plée, M. Mastragostino, S. Passerini, High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte, Journal of Power Sources, 165 (2007) 922-927.
[52] S. Ishimoto, Y. Asakawa, M. Shinya, K. Naoi, Degradation responses of activated-carbon-based EDLCs for higher voltage operation and their factors, Journal of the Electrochemical Society, 156 (2009) A563-A571.
[53] T. Aida, I. Murayama, K. Yamada, M. Morita, Analyses of capacity loss and improvement of cycle performance for a high-voltage hybrid electrochemical capacitor, Journal of the Electrochemical Society, 154 (2007) A798-A804.
[54] W.J. Cao, J.P. Zheng, Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes, Journal of Power Sources, 213 (2012) 180-185.
[55] F. Sun, X.Y. Liu, H.B. Wu, L.J. Wang, J.H. Gao, H.X. Li, Y.F. Lu, In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor, Nano letters, 18 (2018) 3368-3376.
[56] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy & Environmental Science, 7 (2014) 1597-1614.
[57] G. Hasegawa, T. Deguchi, K. Kanamori, Y. Kobayashi, H. Kageyama, T. Abe, K. Nakanishi, High-Level Doping of Nitrogen, Phosphorus, and Sulfur into Activated Carbon Monoliths and Their Electrochemical Capacitances, Chemistry of Materials, 27 (2015) 4703-4712.
[58] D. Salinas-Torres, S. Shiraishi, E. Morallón, D. Cazorla-Amorós, Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions, Carbon, 82 (2015) 205-213.
[59] K. Pinkert, M. Oschatz, L. Borchardt, M. Klose, M. Zier, W. Nickel, L. Giebeler, S. Oswald, S. Kaskel, J. Eckert, Role of Surface Functional Groups in Ordered Mesoporous Carbide-Derived Carbon/Ionic Liquid Electrolyte Double-Layer Capacitor Interfaces, ACS Applied Materials & Interfaces, 6 (2014) 2922-2928.
[60] B. Fang, L. Binder, A Novel Carbon Electrode Material for Highly Improved EDLC Performance, The Journal of Physical Chemistry B, 110 (2006) 7877-7882.
[61] D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte, Carbon, 41 (2003) 1765-1775.
[62] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem Soc Rev, 44 (2015) 7484-7539.
[63] R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta, 45 (2000) 2483-2498.
[64] J.O.M. Bockris, A.K.N. Reddy, Modern Electrochemistry, 1 ed., Springer US1970.
[65] D. Hulicova-Jurcakova, A.M. Puziy, O.I. Poddubnaya, F. Suárez-García, J.M.D. Tascón, G.Q. Lu, Highly Stable Performance of Supercapacitors from Phosphorus-Enriched Carbons, Journal of the American Chemical Society, 131 (2009) 5026-5027.
[66] D. Jiménez-Cordero, F. Heras, M.A. Gilarranz, E. Raymundo-Piñero, Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes, Carbon, 71 (2014) 127-138.
[67] H. Wang, X. Sun, Z. Liu, Z. Lei, Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes, Nanoscale, 6 (2014) 6577-6584.
[68] F.-C. Wu, R.-L. Tseng, C.-C. Hu, C.-C. Wang, The capacitive characteristics of activated carbons—comparisons of the activation methods on the pore structure and effects of the pore structure and electrolyte on the capacitive performance, Journal of Power Sources, 159 (2006) 1532-1542.
[69] Z. Jin, X. Yan, Y. Yu, G. Zhao, Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors, Journal of Materials Chemistry A, 2 (2014) 11706-11715.
[70] K. Fic, G. Lota, M. Meller, E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors, Energy & Environmental Science, 5 (2012) 5842-5850.
[71] T.H. Wu, C.T. Hsu, C.C. Hu, L.J. Hardwick, Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors, Journal of Power Sources, 242 (2013) 289-298.
[72] L. Demarconnay, E. Raymundo-Piñero, F. Béguin, A symmetric carbon/carbon supercapacitor operating at 1.6V by using a neutral aqueous solution, Electrochemistry Communications, 12 (2010) 1275-1278.
[73] Q. Abbas, D. Pajak, E. Frąckowiak, F. Béguin, Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte, Electrochimica Acta, 140 (2014) 132-138.
[74] H.-C. Chien, T.-H. Wu, M. Rajkumar, C.-C. Hu, Effects of buffer agents on hydrogen adsorption and desorption at/within activated carbon for the negative electrode of aqueous asymmetric supercapacitors, Electrochimica Acta, 205 (2016) 1-7.
[75] M. Rajkumar, C.-T. Hsu, T.-H. Wu, M.-G. Chen, C.-C. Hu, Advanced materials for aqueous supercapacitors in the asymmetric design, Progress in Natural Science: Materials International, 25 (2015) 527-544.
[76] T.-M. Ou, C.-T. Hsu, C.-C. Hu, Synthesis and characterization of sodium-doped MnO2 for the aqueous asymmetric supercapacitor application, Journal of The Electrochemical Society, 162 (2015) A5124-A5132.
[77] C.-F. Liu, Y.-C. Liu, T.-Y. Yi, C.-C. Hu, Carbon materials for high-voltage supercapacitors, Carbon, 145 (2019) 529-548.
[78] H.H. Shen, C.C. Hu, Capacitance enhancement of activated carbon modified in the propylene carbonate electrolyte, Journal of The Electrochemical Society, 161 (2014) A1828-A1835.
[79] P.W. Ruch, D. Cericola, A. Foelske-Schmitz, R. Kötz, A. Wokaun, Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages, Electrochimica Acta, 55 (2010) 4412-4420.
[80] J.C. Gao, M. Yoshio, L. Qi, H.Y. Wang, Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode, Journal of Power Sources, 278 (2015) 452-457.
[81] J.A. Read, In-situ studies on the electrochemical intercalation of hexafluorophosphate anion in graphite with selective cointercalation of solvent, The Journal of Physical Chemistry C, 119 (2015) 8438-8446.
[82] M. Ding, K. Xu, J. Zheng, T. Jow, γ-Butyrolactone-acetonitrile solution of triethylmethylammonium tetrafluoroborate as an electrolyte for double-layer capacitors, Journal of power sources, 138 (2004) 340-350.
[83] M. Hahn, A. Würsig, R. Gallay, P. Novák, R. Kötz, Gas evolution in activated carbon/propylene carbonate based double-layer capacitors, Electrochemistry Communications, 7 (2005) 925-930.
[84] P.W. Ruch, D. Cericola, A. Foelske, R. Kötz, A. Wokaun, A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages, Electrochimica Acta, 55 (2010) 2352-2357.
[85] M. Hahn, O. Barbieri, F.P. Campana, R. Kötz, R. Gallay, Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes, Applied Physics A, 82 (2005) 633-638.
[86] F.P. Campana, M. Hahn, A. Foelske, P. Ruch, R. Kötz, H. Siegenthaler, Intercalation into and film formation on pyrolytic graphite in a supercapacitor-type electrolyte (C2H5)4NBF4/propylene carbonate, Electrochemistry Communications, 8 (2006) 1363-1368.
[87] H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors, Adv Mater, 29 (2017).
[88] S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors, Electrochemistry Communications, 60 (2015) 172-175.
[89] A. Brandt, A. Balducci, The Influence of Pore Structure and Surface Groups on the Performance of High Voltage Electrochemical Double Layer Capacitors Containing Adiponitrile-Based Electrolyte, Journal of the Electrochemical Society, 159 (2012) A2053-A2059.
[90] G. Lota, T.A. Centeno, E. Frackowiak, F. Stoeckli, Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors, Electrochimica Acta, 53 (2008) 2210-2216.
[91] K. Chiba, T. Ueda, Y. Yamaguchi, Y. Oki, F. Shimodate, K. Naoi, Electrolyte Systems for High Withstand Voltage and Durability I. Linear Sulfones for Electric Double-Layer Capacitors, Journal of The Electrochemical Society, 158 (2011).
[92] A. Balducci, Electrolytes for high voltage electrochemical double layer capacitors: A perspective article, Journal of Power Sources, 326 (2016) 534-540.
[93] A. Brandt, P. Isken, A. Lex-Balducci, A. Balducci, Adiponitrile-based electrochemical double layer capacitor, Journal of Power Sources, 204 (2012) 213-219.
[94] M. Schroeder, P. Isken, M. Winter, S. Passerini, A. Lex-Balducci, A. Balducci, An Investigation on the Use of a Methacrylate-Based Gel Polymer Electrolyte in High Power Devices, Journal of the Electrochemical Society, 160 (2013) A1753-A1758.
[95] K. Xu, M.S. Ding, T.R. Jow, Quaternary onium salts as nonaqueous electrolytes for electrochemical capacitors, Journal of the electrochemical Society, 148 (2001) A267.
[96] M. Nakamura, M. Nakanishi, K. Yamamoto, Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors, Journal of Power Sources, 60 (1996) 225-231.
[97] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, Journal of Power Sources, 157 (2006) 11-27.
[98] L.R. Radovic, Chemistry & Physics of Carbon, Taylor & Francis2000.
[99] T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara, Electric double-layer capacitor using organic electrolyte, Journal of Power Sources, 60 (1996) 239-247.
[100] A. Yoshida, I. Tanahashi, A. Nishino, Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon, 28 (1990) 611-615.
[101] M. Yang, Z. Zhou, Recent Breakthroughs in Supercapacitors Boosted by Nitrogen‐Rich Porous Carbon Materials, Advanced Science, 4 (2017) 1600408.
[102] M.J. Bleda-Martínez, J.A. Maciá-Agulló, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, A. Linares-Solano, Role of surface chemistry on electric double layer capacitance of carbon materials, Carbon, 43 (2005) 2677-2684.
[103] S.M. Li, S.Y. Yang, Y.S. Wang, H.P. Tsai, H.W. Tien, S.T. Hsiao, W.H. Liao, C.L. Chang, C.C.M. Ma, C.C. Hu, N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte, Journal of Power Sources, 278 (2015) 218-229.
[104] M. Zhu, C. Weber, Y. Yang, M. Konuma, U. Starke, K. Kern, A. Bittner, Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes, Carbon, 46 (2008) 1829-1840.
[105] Y. Xue, H. Chen, J. Qu, L. Dai, Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage, 2D Materials, 2 (2015) 044001.
[106] J. Boltersdorf, S.A. Delp, J. Yan, B. Cao, J.P. Zheng, T.R. Jow, J.A. Read, Electrochemical performance of lithium-ion capacitors evaluated under high temperature and high voltage stress using redox stable electrolytes and additives, Journal of Power Sources, 373 (2018) 20-30.
[107] H.H. Shen, C.C. Hu, A high-voltage asymmetric electrical double-layer capacitors using propylene carbonate, Electrochemistry Communications, 70 (2016) 23-27.
[108] Z. Lin, P.L. Taberna, P. Simon, Graphene-based supercapacitors using eutectic ionic liquid mixture electrolyte, Electrochimica Acta, 206 (2016) 446-451.
[109] L. Dagousset, G. Pognon, G.T. Nguyen, F. Vidal, S. Jus, P.-H. Aubert, Electrochemical characterisations and ageing of ionic liquid/γ-butyrolactone mixtures as electrolytes for supercapacitor applications over a wide temperature range, Journal of Power Sources, 359 (2017) 242-249.
[110] G. Sun, K. Li, L. Xie, J. Wang, Y.J.M. Li, M. Materials, Preparation of mesoporous carbon spheres with a bimodal pore size distribution and its application for electrochemical double layer capacitors based on ionic liquid as the electrolyte, 151 (2012) 282-286.
[111] S. Leyva-García, D. Lozano-Castelló, E. Morallón, T. Vogl, C. Schütter, S. Passerini, A. Balducci, D. Cazorla-Amorós, Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes, Journal of Power Sources, 336 (2016) 419-426.
[112] L. Zhang, K. Tsay, C. Bock, J. Zhang, Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20 °C–80 °C, Journal of Power Sources, 324 (2016) 615-624.
[113] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z.J.N.l. Jang, Graphene-based supercapacitor with an ultrahigh energy density, 10 (2010) 4863-4868.
[114] T. Romann, E. Anderson, P. Pikma, H. Tamme, P. Möller, E. Lust, Reactions at graphene| tetracyanoborate ionic liquid interface–New safety mechanisms for supercapacitors and batteries, Electrochemistry Communications, 74 (2017) 38-41.
[115] H.J. Liaw, C.C. Chen, Y.C. Chen, J.R. Chen, S.K. Huang, S.N. Liu, Relationship between flash point of ionic liquids and their thermal decomposition, Green Chemistry, 14 (2012) 2001-2008.
[116] A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes, International Journal of Hydrogen Energy, 31 (2006) 1999-2017.
[117] C. Zheng, J. Gao, M. Yoshio, L. Qi, H. Wang, Non-porous activated mesophase carbon microbeads as a negative electrode material for asymmetric electrochemical capacitors, Journal of Power Sources, 231 (2013) 29-33.
[118] V. Khomenko, E. Raymundo-Piñero, F. Béguin, High-energy density graphite/AC capacitor in organic electrolyte, Journal of Power Sources, 177 (2008) 643-651.
[119] C. Zheng, M. Yoshio, L. Qi, H.Y. Wang, A 4 V-electrochemical capacitor using electrode and electrolyte materials free of metals, Journal of power Sources, 260 (2014) 19-26.
[120] J. Yan, Q. Wang, T. Wei, Z. Fan, Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities, Advanced Energy Materials, 4 (2013) 1300816.
[121] Q.D. Nguyen, J. Patra, C.-T. Hsieh, J. Li, Q.-F. Dong, J.-K. Chang, Supercapacitive properties of micropore-and mesopore-rich activated carbon in ionic liquid electrolytes with various constituent ions, ChemSusChem, 12 (2018).
[122] R. Mysyk, E. Raymundo-Piñero, F. Béguin, Saturation of subnanometer pores in an electric double-layer capacitor, Electrochemistry Communications, 11 (2009) 554-556.
[123] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, science, 313 (2006) 1760-1763.
[124] B. Fang, Y.Z. Wei, K. Maruyama, M. Kumagai, High capacity supercapacitors based on modified activated carbon aerogel, Journal of Applied Electrochemistry, 35 (2005) 229-233.
[125] S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J.A. Jaszczak, A. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Physical review letters, 100 (2008) 016602.
[126] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano letters, 8 (2008) 902-907.
[127] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano letters, 8 (2008) 3498-3502.
[128] H. Wang, C. Guan, X. Wang, H.J. Fan, A high energy and power Li‐ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode, Small, 11 (2015) 1470-1477.
[129] J. Xu, Z. Tan, W. Zeng, G. Chen, S. Wu, Y. Zhao, K. Ni, Z. Tao, M. Ikram, H. Ji, A Hierarchical Carbon Derived from Sponge‐Templated Activation of Graphene Oxide for High‐Performance Supercapacitor Electrodes, Advanced Materials, 28 (2016) 5222-5228.
[130] M. Kalbac, A. Reina-Cecco, H. Farhat, J. Kong, L. Kavan, M.S. Dresselhaus, The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene, Acs Nano, 4 (2010) 6055-6063.
[131] A.T. Murdock, A. Koos, T.B. Britton, L. Houben, T. Batten, T. Zhang, A.J. Wilkinson, R.E. Dunin-Borkowski, C.E. Lekka, N. Grobert, Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene, ACS nano, 7 (2013) 1351-1359.
[132] L. Gao, J.R. Guest, N.P. Guisinger, Epitaxial graphene on Cu (111), Nano letters, 10 (2010) 3512-3516.
[133] L. Zhao, K.T. Rim, H. Zhou, R. He, T.F. Heinz, A. Pinczuk, G.W. Flynn, A.N. Pasupathy, Influence of copper crystal surface on the CVD growth of large area monolayer graphene, Solid State Communications, 151 (2011) 509-513.
[134] J.R. Miller, R. Outlaw, B. Holloway, Graphene double-layer capacitor with ac line-filtering performance, Science, 329 (2010) 1637-1639.
[135] Z. Bo, Z. Wen, H. Kim, G. Lu, K. Yu, J. Chen, One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal, Carbon, 50 (2012) 4379-4387.
[136] Z. Bo, W. Zhu, W. Ma, Z. Wen, X. Shuai, J. Chen, J. Yan, Z. Wang, K. Cen, X. Feng, Vertically Oriented Graphene Bridging Active‐Layer/Current‐Collector Interface for Ultrahigh Rate Supercapacitors, Advanced materials, 25 (2013) 5799-5806.
[137] M. Winter, O. Besenhard Jürgen, E. Spahr Michael, P. Novák, Insertion Electrode Materials for Rechargeable Lithium Batteries, Advanced Materials, 10 (1999) 725-763.
[138] S.R. Sivakkumar, J.Y. Nerkar, A.G. Pandolfo, Rate capability of graphite materials as negative electrodes in lithium-ion capacitors, Electrochimica Acta, 55 (2010) 3330-3335.
[139] S.R. Sivakkumar, A.G. Pandolfo, Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode, Electrochimica Acta, 65 (2012) 280-287.
[140] S. Kumagai, T. Ishikawa, N. Sawa, Cycle performance of lithium-ion capacitors using graphite negative electrodes at different pre-lithiation levels, Journal of Energy Storage, 2 (2015) 1-7.
[141] M. Schroeder, M. Winter, S. Passerini, A. Balducci, On the Use of Soft Carbon and Propylene Carbonate-Based Electrolytes in Lithium-Ion Capacitors, Journal of the Electrochemical Society, 159 (2012) A1240-A1245.
[142] M. Schroeder, M. Winter, S. Passerini, A. Balducci, On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material, Journal of Power Sources, 238 (2013) 388-394.
[143] J. Zhang, X. Liu, J. Wang, J. Shi, Z. Shi, Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors, Electrochimica Acta, 187 (2016) 134-142.
[144] J.-H. Kim, J.-S. Kim, Y.-G. Lim, J.-G. Lee, Y.-J. Kim, Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitors, Journal of Power Sources, 196 (2011) 10490-10495.
[145] J. Ajuria, M. Arnaiz, C. Botas, D. Carriazo, R. Mysyk, T. Rojo, A.V. Talyzin, E. Goikolea, Graphene-based lithium ion capacitor with high gravimetric energy and power densities, Journal of Power Sources, 363 (2017) 422-427.
[146] L. Jin, X. Guo, R. Gong, J. Zheng, Z. Xiang, C. Zhang, J.P. Zheng, Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors, Energy Storage Materials, 23 (2019) 409-417.
[147] S.-G.K. Poo Reum Choi, Ji Chul Jung, and Myung-Soo Kim, High-energy-density activated carbon electrode for organic electric-double-layer-capacitor using carbonized petroleum pitch, Carbon Letters, 22 (2017) 70-80.
[148] M. Schroeder, S. Menne, J. Ségalini, D. Saurel, M. Casas-Cabanas, S. Passerini, M. Winter, A. Balducci, Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors, Journal of Power Sources, 266 (2014) 250-258.
[149] P.R. Choi, E. Lee, S.H. Kwon, J.C. Jung, M.-S. Kim, Characterization and organic electric-double-layer-capacitor application of KOH activated coal-tar-pitch-based carbons: Effect of carbonization temperature, Journal of Physics and Chemistry of Solids, 87 (2015) 72-79.
[150] T. Aida, I. Murayama, K. Yamada, M. Morita, High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode, Journal of Power Sources, 166 (2007) 462-470.
[151] K.K. Makoto TAKEUCHI, Takamichi MARUYAMA, Akinori MOGAMI and Michio OKAMURA, Electrochemical intercalation of tetraethylammonium tetrefluoroborate into KOH-treated carbon consisting of multi-graphene sheets for an EDLC, Electrochemistry, 66 (1998) 1311-1317.
[152] T.M. Makoto TAKEUCHI, Katsumi KOIKE, Akinori MOGAMI, Takashi OYAMA, and Hiroshi KOBAYASHI Non porous carbon for a high energy density electric double layer capacitor, Electrochemistry, 69 (2001) 487-492.
[153] P.W. Ruch, M. Hahn, D. Cericola, A. Menzel, R. Kötz, A. Wokaun, A dilatometric and small-angle X-ray scattering study of the electrochemical activation of mesophase pitch-derived carbon in non-aqueous electrolyte solution, Carbon, 48 (2010) 1880-1888.
[154] N.C. Yeh, C.C. Hsu, J. Bagley, W.S. Tseng, Single-step growth of graphene and graphene-based nanostructures by plasma-enhanced chemical vapor deposition, Nanotechnology, 30 (2019) 162001.
[155] T.Y. Yi, C.W. Dai, J.A. Wang, C.C.M. Ma, C.C. Hu, Electrochemical activation and capacitance enhancement of expanded mesocarbon microbeads for high-voltage, symmetric supercapacitors, Electrochimica Acta, 359 (2020) 136941.
[156] C.F. Zhang, Y.B. Xie, G.W. Sun, A. Pentecost, J.T. Wang, W.M. Qiao, L.C. Ling, D.H. Long, Y. Gogotsi, Ion intercalation into graphitic carbon with a low surface area for high energy density supercapacitors, Journal of The Electrochemical Society, 161 (2014) A1486-A1494.
[157] R. Lin, P.-L. Taberna, J. Chmiola, D. Guay, Y. Gogotsi, P. Simon, Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors, Journal of the Electrochemical Society, 156 (2009) A7-A12.
[158] S. Komaba, N. Yabuuchi, T. Ozeki, K. Okushi, Y. Katayama, T. Miura, e. al., Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media, Journal of Power Sources, 195 (2010) 6069-6074.
[159] S. Komaba, N. Yabuuchi, T. Ozeki, Z.J. Han, K. Shimomura, H. Yui, Y. Katayama, T. Miura, Comparative study of sodium polyacrylate and poly (vinylidene fluoride) as binders for high capacity Si–graphite composite negative electrodes in Li-ion batteries, The Journal of Physical Chemistry C, 116 (2012) 1380-1389.
[160] Z.J. Han, N. Yabuuchi, K. Shimomura, M. Murase, H. Yui, S. Komaba, High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries, Energy & environmental science, 5 (2012) 9014-9020.
[161] F.M. Courtel, S. Niketic, D. Duguay, Y. Abu-Lebdeh, I.J. Davidson, Water-soluble binders for MCMB carbon anodes for lithium-ion batteries, Journal of Power Sources, 196 (2011) 2128-2134.
[162] J.X. Song, M.J. Zhou, R. Yi, T. Xu, M.L. Gordin, D.H. Tang, Z.X. Yu, M. Regula, D.H. Wang, Interpenetrated gel polymer binder for high‐performance silicon anodes in lithium‐ion batteries, Advanced functional materials, 24 (2014) 5904-5910.
[163] D. Bresser, D. Buchholz, A. Moretti, A. Varzi, S. Passerini, Alternative binders for sustainable electrochemical energy storage–the transition to aqueous electrode processing and bio-derived polymers, Energy & Environmental Science, 11 (2018) 3096-3127.
[164] H. Chen, M. Ling, L. Hencz, H.Y. Ling, G.R. Li, Z. Lin, G. Liu, S.Q. Zhang, Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices, Chemical reviews, 118 (2018) 8936-8982.
[165] M.O. Yanik, E.A. Yigit, Y.E. Akansu, E. Sahmetlioglu, Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage, Energy, 138 (2017) 883-889.
[166] M. Kang, J.E. Lee, H.W. Shim, M.S. Jeong, W.B. Im, H. Yoon, Intrinsically conductive polymer binders for electrochemical capacitor application, RSC Advances, 4 (2014) 27939-27945.
[167] J.A. Wang, Y.T. Lu, S.C. Lin, Y.S. Wang, C.C.M. Ma, C.C. Hu, Designing a novel polymer electrolyte for improving the electrode/electrolyte interface in flexible all-solid-state electrical double-layer capacitors, ACS applied materials & interfaces, (2018).
[168] J.A. Wang, S.C. Lin, Y.S. Wang, C.C.M. Ma, C.C. Hu, Bi-functional water-born polyurethane-potassium poly (acrylate) designed for carbon-based electrodes of quasi solid-state supercapacitors: Establishing ionic tunnels and acting as a binder, Journal of Power Sources, 413 (2019) 77-85.
[169] T. Nakajima, H. Groult, Advanced fluoride-based materials for energy conversion, Elsevier2015.
[170] A. Varzi, R. Raccichini, M. Marinaro, M. Wohlfahrt-Mehrens, S. Passerini, Probing the characteristics of casein as green binder for non-aqueous electrochemical double layer capacitors' electrodes, Journal of Power Sources, 326 (2016) 672-679.
[171] T. Mochizuki, S. Aoki, T. Horiba, M. Schulz-Dobrick, Z.-J. Han, S. Fukuyama, H. Oji, S. Yasuno, S. Komaba, “Natto” binder of poly-γ-glutamate enabling to enhance silicon/graphite composite electrode performance for lithium-ion batteries, ACS Sustainable Chemistry & Engineering, 5 (2017) 6343-6355.
[172] M. Tian, X. Chen, S.T. Sun, D. Yang, P.Y. Wu, A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery, Nano Research, 12 (2019) 1121-1127.
[173] M.D. Zheng, C.X. Wang, Y.L. Xu, K.Q. Li, D. Liu, A water-soluble binary conductive binder for Si anode lithium ion battery, Electrochimica Acta, 305 (2019) 555-562.
[174] A. Mery, P. Bernard, A. Valero, J.P. Alper, N. Herlin-Boime, C. Haon, F. Duclairoir, S. Sadki, A polyisoindigo derivative as novel n-type conductive binder inside Si@ C nanoparticle electrodes for Li-ion battery applications, Journal of Power Sources, 420 (2019) 9-14.
[175] L.J. Ma, J.Q. Meng, Y. Pan, Y.J. Cheng, Q. Ji, X.X. Zuo, X.Y. Wang, J. Zhu, Y.G. Xia, Microporous Binder for the Silicon-Based Lithium-Ion Battery Anode with Exceptional Rate Capability and Improved Cyclic Performance, Langmuir, 36 (2020) 2003-2011.
[176] J. Zhao, X. Yang, Y. Yao, Y. Gao, Y.M. Sui, B. Zou, H. Ehrenberg, G. Chen, F. Du, Moving to Aqueous Binder: A Valid Approach to Achieving High‐Rate Capability and Long‐Term Durability for Sodium‐Ion Battery, Advanced Science, 5 (2018) 1700768.
[177] Z.Q. Xu, J.H. Liu, C. Chen, H. Potapenko, M.Q. Wu, Hydrophilic binder interface interactions inducing inadhesion and capacity collapse in sodium-ion battery, Journal of Power Sources, 427 (2019) 62-69.
[178] W. Zhang, M. Dahbi, S. Komaba, Polymer binder: a key component in negative electrodes for high-energy Na-ion batteries, Current Opinion in Chemical Engineering, 13 (2016) 36-44.
[179] G.R. Li, M. Ling, Y.F. Ye, Z.P. Li, J.H. Guo, Y.F. Yao, J.F. Zhu, Z. Lin, S.Q. Zhang, Acacia Senegal–inspired bifunctional binder for longevity of lithium–sulfur batteries, Advanced Energy Materials, 5 (2015) 1500878.
[180] M.J. Lacey, F. Jeschull, K. Edström, D. Brandell, Why PEO as a binder or polymer coating increases capacity in the Li–S system, Chemical Communications, 49 (2013) 8531-8533.
[181] W.R. Liu, M.H. Yang, H.C. Wu, S.M. Chiao, N.L. Wu, Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder, Electrochemical and Solid State Letters, 8 (2004) A100.
[182] J. Li, R. Lewis, J. Dahn, Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries, Electrochemical and Solid-State Letters, 10 (2007) A17-A20.
[183] N.S. Hochgatterer, M.R. Schweiger, S. Koller, P.R. Raimann, T. Wöhrle, C. Wurm, M. Winter, Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability, Electrochemical and Solid State Letters, 11 (2008) A76.
[184] J.P. Yen, C.C. Chang, Y.R. Lin, S.T. Shen, J.L. Hong, Effects of styrene-butadiene rubber/carboxymethylcellulose (SBR/CMC) and polyvinylidene difluoride (PVDF) binders on low temperature lithium ion batteries, Journal of The Electrochemical Society, 160 (2013) A1811.
[185] M. Dahbi, T. Nakano, N. Yabuuchi, T. Ishikawa, K. Kubota, M. Fukunishi, S. Shibahara, J.Y. Son, Y.T. Cui, H. Oji, Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries, Electrochemistry communications, 44 (2014) 66-69.
[186] S. Komaba, T. Ozeki, N. Yabuuchi, K. Shimomura, Polyacrylate as functional binder for silicon and graphite composite electrode in lithium-ion batteries, Electrochemistry, 79 (2011) 6-9.
[187] N. Yabuuchi, K. Shimomura, Y. Shimbe, T. Ozeki, J.Y. Son, H. Oji, Y. Katayama, T. Miura, S.J.A.E.M. Komaba, Graphite‐silicon‐polyacrylate negative electrodes in ionic liquid electrolyte for safer rechargeable Li‐ion batteries, 1 (2011) 759-765.
[188] S. Kheirandish, I. Gubaydullin, N.J.R.a. Willenbacher, Shear and elongational flow behavior of acrylic thickener solutions. Part II: effect of gel content, 48 (2009) 397-407.
[189] B. Nguyen, J. Gaubicher, B.J.E.A. Lestriez, Analogy between electrochemical behaviour of thick silicon granular electrodes for lithium batteries and fine soils micromechanics, 120 (2014) 319-326.
[190] C. Benoit, D. Demeter, D. Bélanger, C. Cougnon, A Redox‐Active Binder for Electrochemical Capacitor Electrodes, Angewandte Chemie, 128 (2016) 5404-5407.
[191] N. Böckenfeld, S.S. Jeong, M. Winter, S. Passerini, A. Balducci, Natural, cheap and environmentally friendly binder for supercapacitors, Journal of power sources, 221 (2013) 14-20.
[192] T.H. You, C.C. Hu, Designing binary Ru–Sn oxides with optimized performances for the air electrode of rechargeable zinc–air batteries, ACS applied materials & interfaces, 10 (2018) 10064-10075.
[193] S. Miyoshi, T. Akbay, T. Kurihara, T. Fukuda, A.T. Staykov, S. Ida, T. Ishihara, Fast diffusivity of PF6–anions in graphitic carbon for a dual-carbon rechargeable battery with superior rate property, The Journal of Physical Chemistry C, 120 (2016) 22887-22894.
[194] J.R. Macdonald, E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications, History, 1 (2005).
[195] L. Wang, J. Zhao, X. He, J. Gao, J. Li, C. Wan, C. Jiang, Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion batteries, Int. J. Electrochem. Sci, 7 (2012) 345-353.
[196] A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical methods: fundamentals and applications, wiley New York1980.
[197] B. Streipert, S. Röser, J. Kasnatscheew, P. Janßen, X. Cao, R. Wagner, I. Cekic-Laskovic, M. Winter, Influence of LiPF6 on the aluminum current collector dissolution in high voltage lithium ion batteries after long-term charge/discharge experiments, Journal of The Electrochemical Society, 164 (2017) A1474-A1479.
[198] L.J. Hardwick, M. Hahn, P. Ruch, F. Krumeich, P. Novák, R. Kötz, e. al., An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite, Electrochimica Acta, 52 (2006) 675-680.
[199] P.W. Ruch, M. Hahn, F. Rosciano, P. Novák, R. Kötz, A. Wokaun, e. al., In situ X-ray diffraction of the intercalation of (C2H5) 4N+ and BF4− into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes, Electrochimica Acta, 53 (2007) 1074-1082.
[200] J. Seel, J. Dahn, Electrochemical intercalation of PF 6 into graphite, Journal of the Electrochemical Society, 147 (2000) 892-898.
[201] T. Ishihara, Y. Yokoyama, F. Kozono, H. Hayashi, Intercalation of PF6− anion into graphitic carbon with nano pore for dual carbon cell with high capacity, Journal of Power Sources, 196 (2011) 6956-6959.
[202] S.M. Ubnoske, A.S. Raut, C.B. Parker, J.T. Glass, B.R. Stoner, Role of nanocrystalline domain size on the electrochemical double-layer capacitance of high edge density carbon nanostructures, MRS Communications, 5 (2015) 285-290.
[203] H. Yang, J. Yang, Z. Bo, S. Zhang, J. Yan, K. Cen, Edge effects in vertically-oriented graphene based electric double-layer capacitors, J Journal of Power Sources, 324 (2016) 309-316.
[204] J. Hui, M. Burgess, J. Zhang, J. Rodríguez-López, Layer number dependence of Li+ intercalation on few-layer graphene and electrochemical imaging of its solid–electrolyte interphase evolution, ACS nano, 10 (2016) 4248-4257.
[205] J. Dahn, A. Sleigh, H. Shi, J. Reimers, Q. Zhong, B. Way, Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon, Electrochimica Acta, 38 (1993) 1179-1191.
[206] C. Garau, A. Frontera, D. Quiñonero, A. Costa, P. Ballester, P.M. Deyà, Lithium diffusion in single-walled carbon nanotubes: a theoretical study, Chemical physics letters, 374 (2003) 548-555.
[207] G. Mpourmpakis, G. Froudakis, Why alkali metals preferably bind on structural defects of carbon nanotubes: A theoretical study by first principles, The Journal of chemical physics, 125 (2006) 204707.
[208] W.C. Zhou, P.H.-L. Sit, First-Principles Understanding of the Staging Properties of the Graphite Intercalation Compounds towards Dual-Ion Battery Applications, ACS omega, 5 (2020) 18289-18300.
[209] Y.A. Shuichi Ishimoto, Masanori Shinya, and Katsuhiko Naoi, Degradation Responses of Activated-Carbon-Based EDLCs for Higher Voltage Operation and Their Factors, J. Electrochem. Soc, 156 (2009) 9.
[210] B. Dyatkin, J. Halim, J.A. Read, Electrode Surface Composition of Dual-Intercalation, All-Graphite Batteries, C—Journal of Carbon Research, 3 (2017) 5.
[211] X. Shi, Y. Yang, G. Zhu, Ion pre-intercalation and OER modified carbon fiber paper towards high-performance cathode for dual-ion batteries, Ceramics International, 46 (2020) 13835-13840.
[212] K. Xu, C. Merlet, Z. Lin, H. Shao, P.-L. Taberna, L. Miao, J. Jiang, J. Zhu, P. Simon, Effects of functional groups and anion size on the charging mechanisms in layered electrode materials, Energy Storage Materials, 33 (2020) 460-469.
[213] J. Kang, J. Wen, S.H. Jayaram, A. Yu, X. Wang, Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes, Electrochimica Acta, 115 (2014) 587-598.
[214] C.C. Hu, C.H. Chu, Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors—effects of film coverage/thickness and anions, Journal of Electroanalytical Chemistry, 503 (2001) 105-116.
[215] Y. Zhao, Z. Liang, Y. Kang, Y. Zhou, Y. Li, X. He, L. Wang, C. Mai, X. Wang, G. Zhou, Rational Design of Functional Binder Systems for High-Energy Lithium-based Rechargeable Batteries, Energy Storage Materials, (2020).
[216] M.E. Suss, T.F. Baumann, M.A. Worsley, K.A. Rose, T.F. Jaramillo, M. Stadermann, J.G. Santiago, Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity, Journal of power sources, 241 (2013) 266-273.
[217] P. Córdoba-Torres, T.J. Mesquita, R.P. Nogueira, Relationship between the origin of constant-phase element behavior in electrochemical impedance spectroscopy and electrode surface structure, The Journal of Physical Chemistry C, 119 (2015) 4136-4147.
[218] H.K. Song, H.Y. Hwang, K.H. Lee, L.H. Dao, The effect of pore size distribution on the frequency dispersion of porous electrodes, Electrochimica Acta, 45 (2000) 2241-2257.
[219] M.H. Ryou, J. Kim, I. Lee, S. Kim, Y.K. Jeong, S. Hong, J.H. Ryu, T.S. Kim, J.K. Park, H. Lee, Mussel‐inspired adhesive binders for high‐performance silicon nanoparticle anodes in lithium‐ion batteries, Advanced materials, 25 (2013) 1571-1576.
[220] B. Koo, H. Kim, Y. Cho, K.T. Lee, N.S. Choi, J. Cho, A highly cross‐linked polymeric binder for high‐performance silicon negative electrodes in lithium ion batteries, Angewandte Chemie, 124 (2012) 8892-8897.
[221] Y. Ma, J. Ma, G. Cui, Small things make big deal: Powerful binders of lithium batteries and post-lithium batteries, Energy Storage Materials, 20 (2019) 146-175.
[222] N.P. Pieczonka, V. Borgel, B. Ziv, N. Leifer, V. Dargel, D. Aurbach, J.H. Kim, Z. Liu, X. Huang, S.A. Krachkovskiy, Lithium Polyacrylate (LiPAA) as an Advanced Binder and a Passivating Agent for High‐Voltage Li‐Ion Batteries, Advanced Energy Materials, 5 (2015) 1501008.
[223] Z.W. Xie, Z.L. Yu, W.F. Fan, G.C. Peng, M.Z. Qu, Effects of functional groups of graphene oxide on the electrochemical performance of lithium-ion batteries, RSC advances, 5 (2015) 90041-90048.
[224] R. Wagner, M. Korth, B. Streipert, J. Kasnatscheew, D.R. Gallus, S. Brox, M. Amereller, I. Cekic-Laskovic, M. Winter, Impact of selected LiPF6 hydrolysis products on the high voltage stability of lithium-ion battery cells, ACS Applied Materials & Interfaces, 8 (2016) 30871-30878.
[225] S. Wilken, P. Johansson, P. Jacobsson, Infrared spectroscopy of instantaneous decomposition products of LiPF6-based lithium battery electrolytes, Solid State Ionics, 225 (2012) 608-610.
[226] S. Hein, T. Danner, D. Westhoff, B. Prifling, R. Scurtu, L. Kremer, A. Hoffmann, A. Hilger, M. Osenberg, I. Manke, Influence of conductive additives and binder on the impedance of lithium-ion battery electrodes: effect of morphology, Journal of The Electrochemical Society, 167 (2020) 013546.
[227] S. Malifarge, B. Delobel, C. Delacourt, Determination of tortuosity using impedance spectra analysis of symmetric cell, Journal of The Electrochemical Society, 164 (2017) E3329.
[228] J. Landesfeind, J. Hattendorff, A. Ehrl, W.A. Wall, H.A. Gasteiger, Tortuosity determination of battery electrodes and separators by impedance spectroscopy, Journal of The Electrochemical Society, 163 (2016) A1373.
[229] J.-S. Bridel, T. Azais, M. Morcrette, J.-M. Tarascon, D. Larcher, Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries, Chemistry of materials, 22 (2009) 1229-1241.
[230] S. Lim, S. Kim, K.H. Ahn, S.J. Lee, The effect of binders on the rheological properties and the microstructure formation of lithium-ion battery anode slurries, Journal of Power Sources, 299 (2015) 221-230.
[231] T. Liu, X. Han, Z. Zhang, Z. Chen, P. Wang, P. Han, N. Ding, G. Cui, A high concentration electrolyte enables superior cycleability and rate capability for high voltage dual graphite battery, Journal of Power Sources, 437 (2019) 226942.
[232] S. Miyoshi, H. Nagano, T. Fukuda, T. Kurihara, M. Watanabe, S. Ida, T. Ishihara, Dual-carbon battery using high concentration LiPF6 in dimethyl carbonate (DMC) electrolyte, Journal of The Electrochemical Society, 163 (2016) A1206.
[233] H. Tsunekawa, A. Narumi, M. Sano, A. Hiwara, M. Fujita, H. Yokoyama, Solvation and ion association studies of LiBF4− propylenecarbonate and LiBF4− propylenecarbonate− trimethyl phosphate solutions, The Journal of Physical Chemistry B, 107 (2003) 10962-10966.
[234] Q.D. Nguyen, Y.-H. Wu, T.-Y. Wu, M.-J. Deng, C.-H. Yang, J.-K. Chang, Gravimetric/volumetric capacitances, leakage current, and gas evolution of activated carbon supercapacitors, Electrochimica Acta, 222 (2016) 1153-1159.
[235] H. Wang, M. Yoshio, Feasibility of quaternary alkyl ammonium-intercalated graphite as negative electrode materials in electrochemical capacitors, Journal of Power Sources, 200 (2012) 108-112.
[236] T. Ohba, K. Kaneko, Competition of desolvation and stabilization of organic electrolytes in extremely narrow nanopores, The Journal of Physical Chemistry C, 117 (2013) 17092-17098.
[237] S. Miyoshi, H. Nagano, T. Fukuda, T. Kurihara, M. Watanabe, S. Ida, T. Ishihara, Dual-carbon battery using high concentration LiPF6 in dimethyl carbonate (DMC) electrolyte, Journal of The Electrochemical Society, 163 (2016) A1206-A1213.
[238] A. Varzi, A. Balducci, S. Passerini, Natural cellulose: a green alternative binder for high voltage electrochemical double layer capacitors containing ionic liquid-based electrolytes, Journal of The Electrochemical Society, 161 (2014) A368.
[239] C. Zhang, Y. Xie, J. Wang, D. Long, L. Ling, W. Qiao, e. al., Effect of graphitic structure on electrochemical ion intercalation into positive and negative electrodes, Journal of Solid State Electrochemistry, 18 (2014) 2673-2682.
[240] R. Nozu, M. Iizuka, M. Nakanishi, M. Kotani, Investigation of the life process of the electric double layer capacitor during float charging, Journal of Power Sources, 186 (2009) 570-579.
[241] H. Wang, Y. Zhang, H. Ang, Y. Zhang, H.T. Tan, Y. Zhang, Y. Guo, J.B. Franklin, X.L. Wu, M. Srinivasan, A High‐Energy Lithium‐Ion Capacitor by Integration of a 3D Interconnected Titanium Carbide Nanoparticle Chain Anode with a Pyridine‐Derived Porous Nitrogen‐Doped Carbon Cathode, Advanced Functional Materials, 26 (2016) 3082-3093.
[242] L. Kong, L. Su, S. Hao, W. Yang, G. Shao, X. Qin, Graphene-like nitrogen-doped porous carbon nanosheets as both cathode and anode for high energy density lithium-ion capacitor, Electrochimica Acta, 349 (2020) 136303.
[243] X. Li, X. Ou, Y. Tang, 6.0 V High‐Voltage and Concentrated Electrolyte toward High Energy Density K‐Based Dual‐Graphite Battery, Advanced Energy Materials, 10 (2020) 2002567.
[244] J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama, A. Yamada, Superconcentrated electrolytes for a high-voltage lithium-ion battery, Nature communications, 7 (2016) 1-9.
[245] Y. Li, S. Wan, G.M. Veith, R.R. Unocic, M.P. Paranthaman, S. Dai, X.G. Sun, A Novel Electrolyte Salt Additive for Lithium‐Ion Batteries with Voltages Greater than 4.7 V, Advanced Energy Materials, 7 (2017) 1601397.