簡易檢索 / 詳目顯示

研究生: 郭坤宗
Kun-Tsung Kuo
論文名稱: 秩為一的 Drinfeld 模上的一個密度問題
On a density problem for Rank One Drinfeld Modules ( Carlitz Type )
指導教授: 于靖
Jing Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 32
中文關鍵詞: 阿廷猜想
外文關鍵詞: Artin's conjecture
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中,我們將研究在Carlitz模上的Artin猜想以及秩為二的 Drinfeld 模上的一個密度問題。


    Let Fq be the finite field of q elements ( q , some power of a fixed prime number ) ; Fq[t] be the polynomial ring with one variable over Fq and Fq(t) the quotient field of Fq[t] . For any element in Fq[t] , we will study Artin's conjecture for the Carlitz module in the case q=2 , and for a Drinfeld Fq[t]-modules of rank 2 over Fq(t) . Each such Drinfeld module gives a new Fq[t]-modules structure on Fq(t) . It also induces a Fq[t]-modules structure on Fq[t]/(p) for almost all irreducible polynomial p in Fq[t] . We will study the Dirichlet density of all the monic irreducible polynomials in Fq[t] which make the induced Fq[t]-module on Fq[t]/(p) cyclic .

    1. Introduction ..................................................1 2. Explicit formula of the density in the case q>2 ..................................................2 3. Effective version of the Chebotarev density therem for function filds ..................................................8 4. A generalization of Artin's problem for function fields ..................................................14 5. Artin's conjecture for Carlitz modules in the case q=2 ..................................................23 6. On a cyclicity density problem for rank two Drinfeld modules ..................................................29 7. References ..................................................31

    [1] M. Rosen : Number Theory in Function Fields . GTM 210 . Springer Verlag .

    [2] H. Stichtenoth : Algebraic Function Fields and Codes . Springer , Berlin 1994 .

    [3] C. Hooley : On Artin's conjecture . J. Reine Angew. Math. 225 (1967) , 209-220 .

    [4] C.-N. Hsu : On Artin's conjecture for Carlitz modules . Compositio Math. 106 (1997) 247-266 .

    [5] V. K. Murty and J. Scherk : Effective versions of the Chebatarov density theorem for function fields . Compte Rendu 319 (1994) .

    [6] M. Fried and M. Jarden : Field Arithmetic . New York , Springer Verlag , 1986 .

    [7] M. R. Murty , V. K. Murty and B. saradga : Modular forms and the chebotarev density theorem . Amer. J. Math. 110 , 1988.

    [8] M. R. Murty : On Artin's conjecture . Journal of Number Theory 16 (1983) , 147-168 .

    [9] J. S. Milne : Etale Cohomology , Princeton Math. Series 33 , Princeton University Press , 1980 .

    [10] E. Artin : The collected papers of Emil Artin (S. Lang and J. Tate , Eds.) , Addison-Wesley (1965) .

    [11] H. Bilharz : Primdivisoren mit vorgegebener Primitivwurzel . Math. Ann. 114 (1937) , 476-492 .

    [12] W.-C. Chi and Anly Li : Kummer theory of divison points over Drinfeld modules of rank one . Joural of Pure and Applied Algebra 156 (2001) 171-185 .

    [13] C.-N. Hsu : On Drinfeld Modules of Carlitz type . Preprint (1994) .

    [14] J. P. Serre : Linear Representations of Finite Groups , Springer Verlag .

    [15] J.-Z. Li : On a cyclicity problem for Drinfeld moule. 2003 . N.T.H.U. paper of master .

    [16] D. A. Clark and M. Kuwata : Generalized Artin's conjecture for primitive roots and cycicity mod $p$ of Elliptic curves over function fields , Canad. Math. Bull. 38 (2) (1995) 167-173 .

    [17] C.-N. Hsu and J. Yu : On Artin's Conjecture for Rank One Drinfeld Modules . Journal of Number Theory 88 , 157-174 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE