簡易檢索 / 詳目顯示

研究生: 陳至宏
Chen, Chih-Hung
論文名稱: 利用同調控制三色光激發惰性氣體中的非線性頻率轉換現象
Nonlinear Frequency Conversion by Coherently Controlled Three-Color Excitation of Inert Gases
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 施宙聰
Jow-Tsong Shy
李晁逵
Chao-Kuei Lee
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 104
中文關鍵詞: 諧波產生同調控制
外文關鍵詞: harmonic generation, coherence control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 合成同調多色光雷射達到電場波形控制是正發展中的同調控制技術,已有相關的理論與實驗在探討以雙色光或三色光的波形合成對於提高高階諧波產生的轉換效率以及提高截止頻率的作用。相較於在XUV波段的高階諧波,在紫外光到近真空紫外光波段的同調光源,對於光譜學、光化學及雷射加工等應用亦是十分重要的。本論文即在於運用同調三色光的波形控制與惰性原子氣體之間於非線性光學中諧波轉換控制之研究。
    我們使用窄頻Q-開關Nd:YAG雷射的基頻光(1064 nm)、及其共線產生之倍頻光(532 nm)和三倍頻光(355 nm)作為同調三色光源。運用強度及相位控制器來調制這三道光之間的相對強度與相對相位,藉此控制三色合成光的波形。我們研究了控制下的電場波形在與惰性氣體介質的作用中對於較產生高階諧波的影響。在三色光與惰性氣體的三階非線性作用中,可產生第四到第九階的較高階諧波。其中第四與第五階諧波各有三種包含了和頻(ω_n= ω_i+ω_j+ω_k)及四波混頻(ω_n= ω_i+ω_j-ω_k)的產生過程。第六與第七階諧波各有兩種和頻的產生過程。第八與第九階諧波則各只有一個和頻的產生過程。在模擬部份,我們以強聚焦的三色光高斯光束來模擬產生五階諧波,並深入探討這些不同產生過程彼此之間的強度與相位和驅動作用的三色光的相對強度及相位之間的關係。我們模擬了以氬氣作為非線性介質時各階諧波產生的轉換效率。
    在實驗方面,我們使用氬氣作為非線性介質,進行了三色光波形控制對第五階諧波產生的初步研究。實驗結果與模擬結果大致吻合。此結果表明了能以三色光控制較高階諧波的產生,同時驗證了以多色光產生更高階諧波,並控制其合成波形的可行性。


    In recent year, the coherent control technology is widely used in high-order harmonic generation for many researchers. By controlling two- or three- color waveform synthesis, it will enhance the efficiency of high harmonic generation and cut of frequency. Compared with the high-order harmonic in XUV, the coherent light source in UV and VUV are very important to spectroscopy、photochemistry and laser processing…etc.
    In this thesis, we study harmonic generation by three color waveform synthesis in inert gas system. The three-color coherent light are emitted from Nd:YAG laser with fundamental light of 1064 nm (ω1), second harmonic of 532 nm (ω2) and third harmonic of 355 nm (ω3). In order to control the synthesized waveform, we manipulated relative phase and amplitude among these three-color via the amplitude and phase modulator.
    In the third-order nonlinear process, the interaction between three-color beam and inert gases can be used to fourth to ninth harmonics of the laser fundamental output. For fourth harmonic generation, there are three kinds of four-wave mixing processes (ωn=ωi+ωj+ωk、ωn=ωi+ωj-ωk). For fifth harmonic generation, there are three possible processes: ω5=ω1+ω2+ω2、ω5=ω1+ω1+ω3、ω5=ω3+ω3-ω1. For sixth and seventh harmonic, there are two kinds of four-wave mixing processes. For eighth and ninth harmonic generation, there is one four-wave mixing process possible.
    We also assume to simulated Fifth harmonic generation by three-color tightly-focused Gaussian beam. By manipulating the relative phase and amplitude of three-color laser field, we can observe the enhancement of conversion efficiency of fifth harmonic generation in Argon gas. Initial experimental results are in good agreement with theoretical predictions.
    We successfully demonstrated coherent control of fifth harmonic generation by controlling three-color laser field. Thus, those results shows the feasibility of high-order harmonic generation by using multi-color coherently waveform controlled.

    ABSTRACT i 中文摘要 ii 致謝 iii Contents iv List of Figure vi List of Table xiv Chapter 1 Introduction 1 1-1 History 1 1-2 Quantum Coherent Control 2 1-3 Motivation 4 1-4 Thesis Overview 5 Chapter 2 Nonlinear Optics 6 2-1 The Wave Equation for Nonlinear Optical Media 8 2-1.1 Nonlinear Interactions with Plane-Wave Excitation 11 2-1.2 Nonlinear Interactions with Focused Gaussian Beam 12 2-2 Nonlinear polarization 16 2-2.1 Third-Order Nonlinear Optical Processes 16 2-3 Nonlinear Susceptibilities 19 2-4 Refractive Indexes of Argon 22 Chapter 3 Harmonic Generation of Driving Three-Color Laser Fields 24 3-1 Interference of Partially Coherent Light 25 3-2 Fourth Harmonic Generation by Plane-Wave Excitation 26 3-2.1 General Formula 27 3-2.2 Contribution of Each Different Optical Processes 30 3-3 Fifth Harmonic Generation by Plane-Wave Excitation 37 3-3.1 General Formula 37 3-3.2 Contribution of Each Different Optical Processes 40 3-4 Sixth Harmonic Generation by Plane-Wave Excitation 47 3-4.1 General Formula 47 3-4.2 Contribution of Each Different Optical Processes 50 3-5 Seventh Harmonic Generation by Plane-Wave Excitation 55 3-5.1 General Formula 55 3-5.2 Contribution of Each Different Optical Processes 58 3-6 Eighth Harmonic Generation by Plane-Wave Excitation 63 3-6.1 General Formula 63 3-7 Ninth Harmonic Generation by Plane-Wave Excitation 66 3-7.1 General Formula 66 Chapter 4 Conversion Efficiency of Fifth Harmonic Generation 69 4-1 Focused Gaussian Beam Excitation 70 4-2 Evaluation of FbΔk,bL,fL,k"k' and G(bΔk,bL,fL,k"k') 76 4-3 Phase Mismatch per atom 80 4-4 Pressure Dependence of Fifth Harmonic Generation 82 Chapter 5 Experimental Setup 87 5-1 Laser System 88 5-2 Waveform Synthesizer 95 5-2.1 Amplitude Modulator 98 5-2.2 Phase Modulator 103 5-2.3 Telescope System 104 5-3 Gas Cell System (pressure control) 106 5-4 Detection System 107 5-4.1 Photomultiplier Tubes 107 5-4.2 Photodetector 109 Chapter 6 Experimental Results 110 6-1 Nonresonant Fifth Harmonic Generation 111 Chapter 7 Conclusion and Outlook 114 7-1 Conclusion 114 7-2 Outlook 116 Reference 117

    1. Midorikawa, K., Y. Nabekawa, and A. Suda, XUV multiphoton processes with intense high-order harmonics. Progress in Quantum Electronics, 2008. 32(2): p. 43-88.
    2. Franken, P.A., et al., Generation of Optical Harmonics. Physical Review Letters, 1961. 7(4): p. 118-&.
    3. Ward, G.H.C.N.a.J.F., Optical Third-Harmonic Generation in Gases. Phys. Rev. Lett., 1967. 19: p. 556.
    4. Gombojav O. Ariunbold, P.P., ∗ and Jerome V. Moloney, Third and fifth harmonics generation by tightly focused femtosecond pulses at 2.2 µm wavelength in air. Optics Express, 2012. 20(2).
    5. Boyd, R.W., Nonlinear Optics. 1992, California: Academic Press.
    6. Shapiro, M. and P. Brumer, Quantum control of bound and continuum state dynamics. Physics Reports-Review Section of Physics Letters, 2006. 425(4): p. 195-264.
    7. Silberberg, Y., Quantum coherent control for nonlinear spectroscopy and microscopy. Annu Rev Phys Chem, 2009. 60: p. 277-92.
    8. Huang, S.W., et al., Optical waveform synthesizer and its application to high-harmonic generation. Journal of Physics B-Atomic Molecular and Optical Physics, 2012. 45(7).
    9. Mauritsson, J., et al., Sub-cycle control of attosecond pulse generation using two-colour laser fields. Journal of Physics B-Atomic Molecular and Optical Physics, 2009. 42(13).
    10. Telnov, D.A., J. Wang, and S.I. Chu, Two-color phase control of high-order harmonic generation in intense laser fields. Phys Rev A, 1995. 52(5): p. 3988-3996.
    11. Schafer, K.J. and K.C. Kulander, Phase-dependent effects in multiphoton ionization induced by a laser field and its second harmonic. Phys Rev A, 1992. 45(11): p. 8026-8033.
    12. Zeng, Z.N., et al., Attosecond pulse generation driven by a synthesized laser field with two pulses of controlled related phase. Journal of Physics B-Atomic Molecular and Optical Physics, 2012. 45(7).
    13. Xu, H., et al., Third-harmonic generation in relative-phase-controlled two-color laser field. Applied Physics B-Lasers and Optics, 2011. 104(4): p. 909-912.
    14. Buffa, R., et al., Coherent control of third-harmonic generation and multiphoton ionization: Experimental and theoretical studies. Laser Physics, 2005. 15(2): p. 334-340.
    15. Cavalieri, S., L. Fini, and R. Buffa, Coherent control and third-harmonic generation: an experimental study. Journal of the Optical Society of America B-Optical Physics, 2004. 21(3): p. 574-577.
    16. Chen, W.J., et al., Coherent control of third-harmonic-generation by a waveform-controlled two-colour laser field. Laser Physics Letters, 2013. 10(6).
    17. Malvezzi, M., et al., Coherent VUV radiation by harmonic conversion of mixed fields in gases. Laser Physics, 1997. 7(1): p. 22-31.
    18. Giammanco, F., P. Ceccherini, and T. Di Palma, The role of multiphoton ionization in harmonic generation by wave-mixing. Laser Physics, 2001. 11(3): p. 368-376.
    19. Giammanco, F. and P. Ceccherini, Amplification of harmonics generated by wave mixing. Laser Physics, 1998. 8(3): p. 593-598.
    20. Muench, H., S. Chakrabarti, and T. Halfmann, Coherent control of frequency conversion toward short (picosecond) vacuum-ultraviolet radiation pulses. Physical Review A, 2010. 82(3).
    21. Ward, J.F. and G.H.C. New, Optical Third Harmonic Generation in Gases by a Focused Laser Beam. Physical Review, 1969. 185(1): p. 57-&.
    22. Bjorklund, G.J., Effects of focusing on third-order nonlinear processes in isotropic media. IEEE J. Quantum Electron, June 1975. QE-11.
    23. Pershan, N.B.a.P.S., Light Waves at the Boundary of Nonlinear Media. Phys. Rev. Lett., 1962. 128: p. 606-622.
    24. Addison-Wesley, Modern Quantum Mechanics Revised Edition. 1994, Addison-Wesley.
    25. D.C. Hanna, M.A.Y., D. Cotter, Nonlinear Optics of Free Atoms and Molecules. 1979, Springer-Verlag: Berlin.
    26. Harris, R.B.M.a.S.E., Optical third-harmonic generation in alkali metal vapors. IEEE J. Quantum Electron, April 1973. QE-9: p. 470.
    27. H.J. Lehmeier, W.L., and A. Penzkofer., Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation. Optics Communications, 1 November 1985. 56: p. 67–72.
    28. Wolf, M.B.a.E., Principles of Optics 1999, New York:: Pergamon.
    29. Berkowitz, J., Photoabsorption, Photoionization and Photoelectron Spectroscopy. 1979, New York: Academic.
    30. W. F. Chan, G.C., X. Guo, ' G. R. Burton, and C. E. Brion, Absolute optical oscillator strengths for the electronic excitation of atoms at high resolution. III. The photoabsorption of argon, krypton, and xenon. Physical Review A, July 1992. 46: p. 149-171.
    31. West, G.V.M.a.J.B., Absolute photoionization crosssection tables for helium, neon, argon and krypton in the VUV spectral regions. Data Tables, 1976. 18: p. 497-508.
    32. Brumer, M.S.a.P., Principles of the Quantum Control of Molecular Processes. 2003, New York: Wiley.
    33. Rita Mahon, T.J.M., Valerie P. Myerscough, and David W. Koopman, Third-harmonic generation in argon, krypton, and xenon bandwidth limitations in the vicinity of Lyman-α. IEEE Journal of Quantum Electronics, 1979. Qe-15: p. 444 - 451.
    34. Hilbig, R. and R. Wallenstein, Enhanced Production of Tunable Vuv Radiation by Phase-Matched Frequency Tripling in Krypton and Xenon. Ieee Journal of Quantum Electronics, 1981. 17(8): p. 1566-1573.
    35. Wallenstein, R.H.a.R., Tunable VUV radiation generated by two-photon resonant frequency mixing in xenon. IEEE Journal of Quantum Electronics, 1983. QE-19: p. 194-201.
    36. J. Kutzner, H.Z., VUV generation by frequency tripling the third harmonic of a picosecond kHz Nd YLF laser in xenon and mercury vapour. Appl. Phys. B, May 1998. 66: p. 571–577.
    37. Holger Muench, S.C., and Thomas Halfmann, Coherent control of frequency conversion toward short (picosecond) vacuum-ultraviolet radiation pulses. Physical Review A, September 2010. 82(033821).
    38. Buffa, R., S. Cavalieri, and L. Fini, Coherent control and third-harmonic generation. Optics Communications, 2002. 211(1-6): p. 167-170.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE