簡易檢索 / 詳目顯示

研究生: 林建佑
Lin, J.Y.
論文名稱: 次微米鑽石電子元件之研製及特性分析
Fabrication and characterization of submicron scale diamond electronic devices
指導教授: 黃振昌
Hwang, J.
口試委員: 張立
潘扶民
寇崇善
遲雅各
黃振昌
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 139
中文關鍵詞: 鑽石柱電子元件次微米
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文乃是利用無遮罩電漿蝕刻製程來製造次微米長柱狀鑽石棒(SDRs)。本實驗使用13.56MHz之射頻功率輸出100 W之功率產生氧氣電漿來蝕刻拋光之硼參雜與未參雜之多晶鑽石膜。SDRs表面附著一層氧化鐵。此氧化鐵利用歐傑能譜儀與X射線光電子能譜儀來鑑定。我們提出在氧氣電漿蝕刻下鑽石表面會自我生成一層氧化鐵遮罩。此微米尺寸光罩保護其下的鑽石膜,進而促進鑽石柱的形成。
    硼參雜單晶鑽石棒(SCDRs)被利用來製作鋁/鑽石之蕭基二極體。每一根SCDR乃是從一顆單晶鑽石晶粒中被抽取出來。鋁╱鈦金屬被用來當歐姆接觸,鋁被用來當蕭基接觸。為了增進元件的特性,在鋁╱鑽石形成前,氫電漿處理是一步重要製程。在施予正偏壓-3V 時,鋁/鑽石之蕭基二極體展現極高的電流密度 1.4x104 A/cm2
    在多晶鑽石膜上垂直陣列排列的硼參雜SDRs被利用來探討其場發效應。SDRs長約4.5 □m,直徑約383 nm。在氧電漿蝕刻過程中氧化鐵鍍附在SDRs表面,造成低起始電場和低電流密度。當利用鹽酸洗去表面之氧化鐵時,場發特性大幅提升。在酸洗完後,SDRs展現低起始電場 4.5 V/□m 和高電流密度 30 mA/cm2。然而因為在高電流下造成SDRs 尖端鈍化,使的場發射體只能穩定維持一段時間。
    利用SDR來製作的MSM光二極體,進一步照射鎢絲燈,白光和254 nm的紫外光來分析其特性。在SDR兩端鍍鋁金屬來形成MSM結構。剛刮下來的SDR經由繞射圖分析是由三顆晶粒組成。在3 V的偏壓下,當MSM照射鎢絲燈與白光時均會產生10-6 A的高光電流。在-1V的偏壓下,次微米鋁╱鑽石MSM光二極體展現出高的響應778 A/W。


    Long submicron diamond rods (SDRs) in long conical shape have been fabricated by mask-free plasma etching process. Both undoped and doped polished polycrystalline diamond were etched in oxygen plasma generated by a radio-frequency power of 100 W at 13.56 MHz. The SDR is coated with a Fe2O3 layer, as characterized by Auger electron spectroscopy, X-ray photoemission microscopy. We propose that a “self-forming” mask of Fe2O3 is generated during the etching process in which iron atoms sputtered from the substrate holder are deposited and oxidized on the diamond surface forming “micromask”. The “micromask” protects the underlying diamond and promotes the formation of SDRs.
    The boron doped single crystalline diamond rods (SCDRs) were used to fabricate Al/diamond Schottky diodes. Each SCDR was extracted from a grain in the polycrystalline film. The as-scratched SCDR was confirmed to be single crystalline diamond by electron diffraction measurements. Al/Ti and Al metals were deposited to form ohmic and Schottky contacts, respectively. A hydrogen plasma treatment is an essential step prior to the formation of Al/diamond Schottky contact in order to improve the device performance. The submicron scale Al/diamond Schottky diode exhibits a very high current density of 1.4 x104 A/cm2 at a forward bias (VF) voltage of -3V.
    Vertically aligned boron doped SDRs on the polycrystalline diamond film were used to investigated their field emission properties. The SDRs are ~4.5 □m in height and ~383 nm in diameter. Iron oxide is coated on SDRs in the formation of one-dimensional SDRs during oxygen plasma etching. The as-etched SDRs suffer with high turn-on field (ETO) and low field emission current density (JFE) due to the iron oxide. A huge improvement in the field emission characteristics can be achieved by removing iron oxide using a wet-etch process in a diluted HCl (37%). After the wet-etch, the SDRs exhibit a low ETO value of 4.5V/□m (at 10 □A/cm2) and a high JFE value of 30 mA/cm2 (at 8.5 V/□m). However, the FE emitter is only stable for a short period of time at high current stress owing to the rounding of the tips of SDRs.
    MSM photodiodes fabricated on submicron scale diamond rods (SDRs) was respectively characterized under the illumination of tungsten light, white light and 254nm UV light. Al metals were deposited on both side of a SDR to form a MSM structure. The as-scratched SDR was confirmed to be three single crystalline diamond grains by electron diffraction measurements showing different fuzzy spot patterns at different part of a SDR. A high photocurrent of 10-6 A at a bias of 3 V was measured when the MSM photodiode was exposed to tungsten light and white light. The submicron scale Al/diamond MSM photodiode exhibits a very high responsibility of 778 A/W at a forward bias (VF) voltage of -1V when exposed to 254nm UV light.

    Abstract (Chinese) …………………………………………………………………..I Abstract (English)…………………………………………………………...………II Acknowledgements (Chinese)………………………………………………….…V Contents…………………………………………………...………………………VI List of Tables ……………………………..……………………………………….X List of Figures ……………………………………………………………………XI Chapter 1 Introduction...................................................................................1 1-1 Motivations and objectives..................................................................1 1-1-1 Fabrication of submicron scale vertically aligned diamond rods by mask-free oxygen plasma etching…....…………………………….1 1-1-2 Schottky diode fabricated on a single crystalline diamond rod…………………….……………………………………………………3 1-1-3 Field emission from one-dimensional submicron diamond rods……..……………………………………………………………….....4 1-1-4 Photodiodes fabricated on diamond rods using metal semiconductor metal structures…………………………………………4 1-2 Organization of the thesis...................................................................5 References..............................................................................................6 Chapter 2 Background study and literature review......................................8 2-1 Properties of diamond........................................................................8 2-2 Hydrogenated diamond surface………...………………………………8 2-2-1 Surface conductive layer…………………..……………………....8 2-2-2 Negative electron affinity……………………………………….10 2-3 Diamond as electronic devices.……………...……………………….11 2-3-1 Electronic application of diamond………………………………12 2-3-2 P-N junctions……………………………………………………..12 2-3-3 Schottky diodes…………………………………………………..13 2-3-4 Hydrogen terminated diamond FET……………………………16 2-3-5 Ultraviolet photodetectors……………………………………….16 2-3-5-1 MSM photodetector……………………………………..17 2-3-5-2 Schottky photodiode…………….………...……………19 2-3-6 Field emitter……………………………………………………....20 2-4 The problems faced by application of diamond device………………22 2-5 The development of growing diamond film……………………………23 2-5-1 Polycrystalline diamond…………………………………………23 2-5-2 Single crystal diamond…………………………………………..24 2-6 One dimensional diamond structure…………………………………...26 2-6-1 Top down approach……………...………………………………27 2-6-2 Bottom up approach……………………………………………..29 2-6-3 Bottom up approach without the template…………………….30 2-7 Summaries……………………………………………………………….31 References..............................................................................................41 Chapter 3 Experimental procedures……………………………….………48 3-1 Experimental flow chart…………………………………….……..…….49 3-2 Fabrication of the submicron diamond rods…………………………50 3-2-1 Radio frequency chemical vapor deposition system (RFCVD)……..……………………………………………………50 3-2-2 Submicron diamond rods synthesis procedures……………..51 3-3 Analysis instruments……..………….…………………………53 3-3-1 Field emission scanning electron microscope (SEM)……53 3-3-2 High resolution transmission electron microscope (HRTEM)..53 3-3-3 X-ray photoemission spectroscopy (XPS)……………………..54 3-3-4 Scanning Auger nanoprobe (AES)……………………………..54 3-3-5 Device I-V characterization………………………………………55 3-3-6 Field emission measurement……………………………………55 3-3-7 Ultraviolet hand lamp…………………………………………….55 3-4 The fabrication flow of the one-dimensional diamond based devices…………………………………………………………………….56 3-4-1 Schottky diode……………………………………………………..56 3-4-2 MSM photodiode…………………………………………………..57 3-4-3 Field emitter………………………………………………………..58 Chapter 4 Fabrication of submicron scale vertically aligned diamond rods by mask-free oxygen plasma etching…………………..63 4-1 Introduction……………………………………………………………….63 4-2 Experimental…………………………………………………..…………66 4-3 Results and discussion…………………………………………………67 4-4 Conclusions……………………………………………….…………….73 References ………………………………………………………………..….82 Chapter 5 Schottky diode fabricated on a single crystalline diamond rod ……………………………………………………………………………………….84 5-1 Introduction……………………………………………………………….84 5-2 Experimental…………………………………………………..…………87 5-3 Results and Discussion…………………………………………………89 5-4 Conclusions…………..………………………………………………93 References ………………………………………………………………….102 Chapter 6 Field emission from one-dimensional submicron diamond rods………………………...…………………………..……..……105 6-1 Introduction………………………………………………………….105 6-2 Experimental…………………………………………………..…...107 6-3 Results and discussion……………………………………………108 6-4 Conclusions………………………………………….…………….111 References ……………………………………………..…………….….118 Chapter 7 Submicron scale diamond photodiodes using metal-semiconductor-metal structures………………………..120 7-1 Introduction …………...……………………………………..…………120 7-2 Experimental………………..………………………………..…………122 7-3 Results and discussion……………….………………...….……….…124 7-4 Conclusions..……………………..………………………………...…..128 References ………………………………………………..…………….….134 Chapter 8 Conclusions………………………………………..……………....136 Publications…………..…...............................................................................139

    [1]Shiomi H 1997 Jpn. J. Appl. Phys. Part1 36 7745
    [2] Baik E S and Baik Y J 2000 J. Mater. Res. 15 923
    [3] Zhang W J, Wu Y, Wong W K, Meng X M, Chan C Y, Bello I, Lifshitz Y and Lee S T 2003 Appl. Phys. Lett. 83 3365
    [4] Okuyama S, Matsushita S I and Fujishima A 2002 Langmuir 18 8282
    [5] Ando Y, Nishibayashi Y and Sawabe 2004 Diamond Relat. Mater. 13 633
    [6] Wei M, Terashima C, Lv M, Fujishima A and Gu Z Z 2009 Chem. Commun. 3624
    [7] Masuda H, Yanagishita K, Yasui K, Nishio K, Yagi I, Rao T N and Fijishima A 2001 Adv. Mater. 13 247
    [8] Yanagishita T, Nishio K, Nakao M, Fujishima A and Masuda H 2002 Chem. Lett. 10 976
    [9] Kobashi K, Tachibana T, Yokota Y, Kawakami N and Hayashi K 2003 J. Mater. Res. 18 305
    [10] Chih Y K, Chen C H, Hwang J, Lee A P and Kou C S 2004 Diamond Relat. Mater. 13 1614
    [11] Sun L, Gong J, Zhu D, Zhu Z and He S 2004 Adv. Mater. 16 1849
    [12] Lin J Y, Lin W K, Gan J Y, Hwang J C and Kou C S 2011 Nanotechnology 22 205707
    [13] Isberg J, Hammersberg J, Johansson E, Wikstrom T. Twitchen D J, Whitehead A J, Coe S E and Scarsbook G A 2002 Science 294 1670
    [14] Sussmann R S, “ CVD Diamond for Electronic Devices and Sensors”, A John Wiley and Sons, Ltd. 2009 P. 290
    [15] Landstrass M I and Ravi K V 1989 Appl. Phys. Lett. 55 975
    [16] Maier F, Riedel M, Matel B, Ristein J and Ley L 2000 Phys. Rev. Lett. 85 3472
    [17] Kawarada H 1996 Surf. Sci. Rep. 26 205
    [18] Aoki M and Kawarada H 1994 Jpn. J. Appl. Phys. 33 L708
    [19] Kueck D, Elhajj H, Kaiser A and Kohn E 2008 Diamond Relat. Mater. 17 732
    [20] Yang W, Auciello O, Butler J E, CAI W, Carlisle J A, Gerbi J E, Gruen D M, Knickerbocker T, Lasseter T L, Ressell J N, JR, Smith L M and Hamers R J 2002 Nature Maters.1 253
    [21] Garrido J A, Härtl A, Kuch S, Stutzmann M, Williams O A and Jackmann R B 2005 Appl. Phys. Lett. 86 073504
    [22] Kalish R 2007 J. Phys. D: Appl. Phys. 40 6467
    [23] Brophy J J 1955 Phys. Rev. 99 1336
    [24] Rodgers G B and Raal F A 1960 Rev. Sci. Instrum. 31 663
    [25] Vavilov V S, Gukasyan M A, Guseva M I, Konorova E A, and Serienko V F 1972 Sov. Phys. Semicond. 16 856
    [26] Guseva M I, Konorova E A, Kuznetsov Yu A and Sergienko V F 1978 Sov. Phys. Semicond. 12 290
    [27] Himpsel F J, Eastman D E and van der Veen J F 1980 Solid State Commun. 36 631
    [28] Gildenblat G SH, Grot S A and Badzian A 1991 Proc. of the IEEE 79 647
    [29] Spitsyn B V, Bouilov L L and Derjaguin B C 1981 J. Crystal Growth 52 219
    [30] Matsumoto S, Sato Y, Kamo M and Setaka N 1982 Jap. J. Appl. Phys. 21 1183
    [31] Kamo M, Sato Y and Matsumoto S 1983 J. Cystal Growth 62 642
    [32] Gildenblat G Sh, Grot S A, Wronski C R, Badzian A R, Badzian T, and Messier R 1988 Appl. Phys. Lett. 15 586
    [33] Mort J, Kuhman D, Machonkin M, Morgan M, Jansen F, Okumura K, Legrice Y M and Nemanich R J 1989 Appl. Phys. Lett. 55 1121
    [34] Shiomi H, Nakahata H, Imai T, Nishibayashi Y, and Fujimori N1989 Jap. J. Appl. Phys. 28 758
    [35] Grot S A, Gildenblat G Sh, Hatfield C W, Wronski C R, Badzian A R, Badzian T and Messier R 1990 IEEE Electron Device Letters 11 100
    [36] Shiomi H, Nishibayashi Y, and Fujimori N 1989 Jap. J. Appl. Phys. 28 L-2153-4
    [37] Nishibayashi Y and Fujimori N 1990 in Proc. Second Int. Conf. on New Diamond Science and Technology, Washington, DC, Sept. 23-27
    [38] Koizomi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899
    [39] Tajani A, Tavares C, Wade M, Baron C, Gheeraert E, Bustarret E, Koizumi S and Araujo D 2004 Phys. Stat. Sol. (a) 201 2462
    [40] Singh J 1994 Semiconductor Devices: An Introduction. New York: Mc-Graw-Hill p. 255
    [41] Geis M W, Rathman D D, Ehrlich D J, Murphy R A and Lindley W T 1987 IEEE Electron Device Lett. 8 341
    [42] Shiomi H, Nakahata H, Imai T, Nishibayashi Y and Fujimori N 1989 Jap. J. Appl. Phys. 28 758
    [43] Hayashi K, Yamanaka S, Watanabe H, Sekiguchi T, Okushi H and Kajimura K 1997 J. Appl. Phys. 81 744
    [44] Chen Y G, Ogura M, Okushi H and Kobayashi N 2003 Diamond Relat. Mater. 12 1340
    [45] Volpe P N, Muret P, Pernot J, Omnes F, Teraji T, Jomard F, Planson D, Brosselard P, Dheilly N, Vergne B and Scharnholtz S 2010 Phys. Status Solidi A 9 2088
    [46] Kumaresan R, Umezawa H and Shikata S 2010 Diamond Relat. Mater. 19 1324
    [47] Kawarada H, Aoki Makoto and Ito M 1994 Appl. Phys. Lett. 65 1563
    [48] Umezawa H, Tsugawa K, Yamanaka S, Takeuchi D, Okushi H and Kawarada H 1999 Jpn. J. Appl. Phys. 38 L1222
    [49] Hirama K, Miyamoto S, Matsudaira H, Yamada K and Kawarada H 2006 Appl. Phys. Lett. 88 112117
    [50] Monroy E, Calle F, Pau J L, Munoz E, Omnes F, Beaumont B and Gibart, P 2001 J. Cryst. Growth 230 537
    [51] McKeag R D, Chan S M and Jacman R 1995 Appl. Phys. Lett. 67 2117
    [52] Salvatori S, Rossi M C, Scotti F, Conte G, Galluzzi F and Ralchnko V 2000 Diamond Relat. Mater. 9 982
    [53] Looi H J, Whitfield M D and Jackman R B 1999 Appl. Phys. Lett. 74 3332
    [54] Balducci A, Marinelli M, Milani E, Morgada M E, Tucciarone A, Verona-Rinati G, Angelone M and Pillon M 2005 Appl. Phys. Lett. 86 193509
    [55] Razeghi M and Rogalski A 1996 Semiconductor Ultraviolet Detectors. J. Appl. Phys. 79 7433
    [56] Whitfield M D, Chan S SM and Jackman R B 1996 Appl. Phys. Lett. 68 290
    [57] Liao M, Koide Y and Alvarez J 2005 Appl. Phys. Lett. 87 022105
    [58] Fowler R H and Nordheim L 1928 Proc. Royal Soc. London 119 173
    [59] Liu J, Zhirnov VV, Myers A F, Wojak G J, Choi W B, Hren J J, Wolter S D, McClure M T, Stoner B R and Glass J T 1995 J. Vac Sci. Technol. B 13 422
    [60] Zhu W, Kochanski G P and Jin S 1998 Science 282 1471
    [61] Subramanian K, Kang W P, Davidson J L, Takalkar R S, Choi B K, Howell M and Kerns D V 2006 Diamond Relat. Matt. 15 1126
    [62] Chen M Y, Wu K Y, Chang M T, Chou L J and Kou CS 2007 Nanotechnology 18 455706
    [63] Redfield A G 1954 Phys. Rev. 94 526
    [64] Denham P, Lightowlers E C and Dean P J 1967 Phys. Rev. 161 762
    [65] Nava F, Canali C, Jacoboni C, Reggiani L and Kozlov S F 1980 Solid State Commun. 33 475
    [66] Raggiani L, Bosi S, Canali C, Nava F and Kozlov S F 1981 Phys. Rev. B 23 3050
    [67] Malta D M, JAvW, Wynands H A and Fox B A 1995 J. Appl. Phys. 77 1536
    [68] Yamanaka S, D, Watanabe H, Okushi H, Kajimura K 1999 Physica Status Solidi (a) 174 59
    [69]Shiomi H 1997 Jpn. J. Appl. Phys. Part1 36 7745
    [70] Baik E S and Baik Y J 2000 J. Mater. Res. 15 923
    [71] Zhang W J, Wu Y, Wong W K, Meng X M, Chan C Y, Bello I, Lifshitz Y and Lee S T 2003 Appl. Phys. Lett. 83 3365
    [72] Okuyama S, Matsushita S I and Fujishima A 2002 Langmuir 18 8282
    [73] Ando Y, Nishibayashi Y and Sawabe 2004 Diamond Relat. Mater. 13 633
    [74] Wei M, Terashima C, Lv M, Fujishima A and Gu Z Z 2009 Chem. Commun. 3624
    [75] Masuda H, Yanagishita K, Yasui K, Nishio K, Yagi I, Rao T N and Fijishima A 2001 Adv. Mater. 13 247
    [76] Yanagishita T, Nishio K, Nakao M, Fujishima A and Masuda H 2002 Chem. Lett. 10 976
    [77] Kobashi K, Tachibana T, Yokota Y, Kawakami N and Hayashi K 2003 J. Mater. Res. 18 305
    [78] Chih Y K, Chen C H, Hwang J, Lee A P and Kou C S 2004 Diamond Relat. Mater. 13 1614
    [79] Sun L, Gong J, Zhu D, Zhu Z and He S 2004 Adv. Mater. 16 1849
    [80] Bogdanov A, Vilulin I M and Bogdonova T V 1982 Sov. Phy. Semicond. 16 720
    [81] Konoirova E A, Kuzenetsov Y A, Sergienko V F, Tkachenko S D, Tsilkanov A V, Spitsyn A V and Danyushevski Y Z 1983 Sov. Phy. Semicond. 17 146
    [82] Bazhenov V K, Vilulin I M and Gonar A G 1985 Sov. Phys. Semicond. 19 829
    [83]Reggiani L, Bosi S, Canali S, Nava F and Kozlov S F 1979 Solid State Commun. 30 333
    [84]H. Shiomi 1997 Jpn. J. Appl. Phys. 36 7745
    [85]Masuda H, Yasui K, Watanabe M, Nishio K, Nakao M, Tamamura T, Rao T N and Fujishimac A 2001 Electrochem. Solid-State Lett. 4 G101
    [86]Okuyama S, Matsushita S I and Fujishima A 2002 Langmuir 18 8282
    [87]Ando Y, Nishibayashi Y, Kobashi K, Hirao T and Oura K 2002 Diamond Relat. Mater. 11 824
    [88]Zou Y S, Yang Y, Zhang W J, Chong Y M, He B, Bello I and Lee S T 2008 Appl. Phys. Lett. 92 053105
    [89]Yang N, Uetsuka H, Osawa E and Nebel C E 2008 Nano Lett. 8 3572
    [90]Baik E S and Baik Y J 2000 J. Materi. Res. 15 923
    [91] Wei M, Terashima C, Lv M, Fujishima A and Gu Z Z 2009 Chem. Commun. 3624
    [92] Szunerits S, Coffinier Y, Galopin E, Brenner J and Boukherroub R 2010 Electrochem. Commun. 12 438
    [93] Coffinier Y, Galopin E, Szunerits S and Boukherroub R 2010 J. Mater. Chem. 20 10671
    [94] Chastain J, Perkin-Elmer Corporation Physical Electronics Division, Handbook of X-ray Photoelectron Spectroscopy, Minnesota, USA, 1992.
    [95] Bogdanov A, Vilulin I M and Bogdonova T V 1982 Sov. Phy. Semicond. 16 720
    [96] Konoirova E A, Kuzenetsov Yu A, Sergienko V F, Tkachenko S D, Tsilkanov A V, Spitsyn A V and Danyushevski Y Z 1983 Sov. Phy. Semicond. 17 146
    [97] Bazhenov V K, Vilulin I M and Gonar A G 1985 Sov. Phys. Semicond. 19 829
    [98]Reggiani L, Bosi S, Canali S, Nava F and Kozlov S F 1979 Solid State Commun. 30 333
    [99]Shiomi H, Nakahata H, Imai T, Nishibayashi Y and Fujimori N 1989 Jpn. J. Appl. Phys. 28 758
    [100] Hayashi K, Yamanaka S, Watanabe H, Okushi H and Kajimura K 1997 J.Appl. Phys. 81 744
    [101] Kawarada H 1996 Surface Science Reports 26 205
    [102] Liao M, Koide Y, Alvarez 2005 Appl. Phys. Lett. 87 022105
    [103] Suzuki M, Koizumi S, Katagiri M, OnoT, Sakuma M, Yoshida H, SakaiT and Uchikoga S, 2006 phys. stat. sol. (a) 203 3128

    [104] Ebert W, Vescan A, Borst T H, and Kohn E. 1994 IEEE Electron. Device Lett. 15 289
    [105] Koné S, Civrac G, Schneider H, Isoird K, Issaoui R, Achard J and Gicquel, 2010 Diamond Relat. Mater. 19 792
    [106]Gildenblat G Sh, Grot S A, Wronski C R, Badzian A R, Badzian and Messier R 1988 Appl. Phys. Lett. 53 586
    [107]Fiegl B, Kuhnert R, Ben-Chorin M and Koch F 1994 Appl. Phys. Lett. 65 371
    [108] Baik E S, Baik Y J and Jeon D 2000 J. Mater. Res. 15 923
    [109] Okuyama S, Matsushita S I and Fujishima A 2002 Langmuir 18 8282
    [110] Zou Y S, Yang Y, Zhang W J, Chong Y M, He B, Bello I and Lee S T 2008 Appl. Phys. Lett. 92 053105
    [111] Mori Y, Hatta A, Ito T and Hiraki A 1992 Jpn. J. Appl. Phys. 31 L1718
    [112] Ando Y, Nishibayashi Y, Kobashi K, Hirao T and Oura K 2002 Diamond Relat. Mater. 11 824
    [113] Grot S A, Gildenblat G SH, Hatfield C W, Wronski C R, Badzian A R and Messier R 1990 IEEE Electron Device Lett. 11 100
    [114] Takeuchi D, Yamanaka S and Okushi H 2002 Diamond Relat. Mater. 11 355
    [115] Craciun M, Saby Ch, Muret P and Deneuville A 2004 Diamond Relat. Mater. 13 292
    [116] Li J J, Gu C Z, Wang Q, Xu P, Wang Z L, Xu Z and Bai X D 2005 Appl. Phys. Lett. 87, 143107
    [117] Wei C H, Chen C H, Yen C M, Chen M Y, Hwang J, Lee A P and Kou C S 2005 J. Electrochem. Soc. 152, C366
    [118] Tanemura M, Tanaka J, Itoh K, Fujimoto Y, Agawa Y, Miao L and Tanemura S 2005 Appl. Phys. Lett. 86, 113107
    [119] De Heer W A, Chatelain A and Ugarte D 1995 Science 270, 1179
    [120] Bonard J M, Kind H, Stockli T and Nilsson L O 2001 Solid State Electronic 45, 893
    [121] Jung M S, Ko Y K, Jung D H, Choi D H, Jung H T, Heo J N, Sohn B H, Jin Y W and Kim J 2005 Appl. Phys. Lett. 87, 013114
    [122] Chen M Y, Wu K Y, Hwang J, Chang M T, Chou L J and Kou C S 2007 Nanotechnology 18, 455706
    [123] Zhang W J, Wu Y, Wong W K, Meng X M, Chan C Y, Bello I, Lifshitz Y and Lee S T 2003 Appl. Phys. Lett. 83, 3365
    [124] Wang M S, Peng L M, Wang J Y and Chen Q 2005 J. Phy. Chem. B, 109, 110
    [125] Krainsky I L and Asnin V M 1998 Appl. Phys. Lett. 72, 2574

    [126] Okano K, HoshinaK, Iida M, Koizumi S andInuzuka T 1994 Appl. Phys. Lett., 64, 2742
    [127] Li J J, Zheng W T, Gu C Z, Jin Z S, Gu G R, Mei X X, Mu Z X and Dong C 2005 Appl. Phys. A, 81, 357
    [128] Geis M W, Twichell J C, Efremow N N, Krohn K and Lyszczarz T M 1996 Appl. Phys. Lett. 68, 2294
    [129] K. Okano, S. Koizumi, S. R. P. Silva, and G. A. J. Amaratunga, Nature, 381, 140 (1996).
    [130] Talin A A, Pan L S, McCarty K F, Felter T E, Doerr H J and Bunshah R F 1996 Appl. Phys. Lett., 69, 3842
    [131] Lacher F, Wild C, Behr D and Koidl P 1997 Diamond Relat. Mater. 6, 1111
    [132] Monroy E, Calle F, Mun˜oz E and Omne`s F 1999 Appl. Phys. Lett. 74, 3401
    [133] Hassan Z, Lee Y C, Yam F K, Abdullah M J, Ibrahim K and M.E. Kordesch 2004 Materials Chemistry and Physics. 87, 369
    [134] Palacios T, Monroy E, Calle F and Omnes F 2002 Appl. Phys. Lett. 81, 1902
    [135] Jiang W, Ahn J, Xu F L, Liaw C Y, Chan Y C, Zhou Y and Lam Y L 1998 Appl. Phys. Lett. 72, 1131
    [136] Looi H J, Whitfield M D and Jackman R B 1999 Appl. Phys. Lett. 74, 3332
    [137] Ali G M and Chakrabarti P 2010 J. Phys. D: Appl. Phys. 43, 415103
    [138] Bogdanov A, Vilulin I M and Bogdonova T V 1982 Sov. Phy. Semicond. 16, 720
    [139] Konoirova E A, Kuzenetsov Yu A, Sergienko V F, Tkachenko S D, Tsilkanov A V, Spitsyn A V and Danyushevski Y Z 1983 Sov. Phy. Semicond. 17, 146
    [140] Bazhenov V K, Vilulin I M and Gonar A G 1985 Sov. Phys. Semicond. 19, 829
    [141] Reggiani L, Bosi S, Canali S, Nava F and Kozlov S F 1979 Solid State Commun. 30, 333
    [142] Lin J Y, Li Z C, Chen C Y, Chou L J, Hwang J C and Kou C S 2011 Diamond Relat. Mater. 20 922

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE