研究生: |
巫玟錚 Wu, Wen-Cheng |
---|---|
論文名稱: |
薛丁格方程解在黎曼幾何上的分析 A note on the parabolic kernel of the Schrodinger operator |
指導教授: |
宋瓊珠
Sung, Chiung-Jue |
口試委員: |
宋瓊珠
Sung, Chiung-Jue 高淑蓉 Kao, Shu-Jung 饒維明 Nhieu, Duy-Minh |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 薛丁格方程 、熱方程 |
外文關鍵詞: | Gradient estimate, Harnack inequality, asympototic, Schrodinger, parabolic, heat kernel, Green's function, eigenvalue |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this note, we study parabolic equations of the type (△- λ^{2}q(x,t)- d/dt)u(x,t)=0 on an n-dimensional Riemannian manifold M. By studying the parabolic equation of this type, we discuss the gradient estimates and the Harnack inequality for positive solutions. In some case, we utilize the Harnack inequality to estimate the upper bound and the lower bound for positive solutions. Applications of these estimates for the equation are also discussed. Finally, we study the asymptotic behaviour for the fundamental solution of the operator △- λ^{2}q(x,t)- d/dt as λ--> ∞.
[A] ARONSON, D. G., Uniqueness of positive weak solutions of second order parabolic equations. Ann. Polon. Math., (1965), 285-303
[Az] AZENCOTT, R., Behavior of diffusion semi-groups at infinity. Bull. Soc. Math. France, 102 (1974), 193-240
[C-E] CHEEGER, J. & EBIN, D., Comparison theorem in Riemannian geometry. North-Holland Math. Library (1975).
[C-G] CHEEGER, J. & GROMOLL, D., The splitting theorem for manifolds of nonnegative Ricci curvature. J. Differential Geom., 6 (1971), 119-128.
[C-G-T] CHEEGER, J., GROMOV, M. & TAYLOR, M., Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differential Geom., 17 (1983), 15-33.
[C-Y] CHENG, S. Y. & YAU, S. T., Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math., 28 (1975), 333-354.
[C-L-Y] CHENG, S. Y., LI, P. & YAU, S. T., On the upper estimate of the heat kernel of a complete Riemannian manifold. Amer. J. Math., 103 (1981), 1021-1063.
[Ch-Y] CHEEGER, J. & YAU, S. T., A lower bound for the heat kernel. Comm, Pure Appl. Math., 34 (1981), 465-480.
[D-L] DONNELLY, H. & LI, P., Lower bounds for the eigenvalues of Riemannian manifolds. Michigan Math. J., 29 (1982), 149-161.
[F-S] FISCHER-COLBRIE, D. & SCHOEN, R., The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature. Comm. Pure Appl. Math., 33 (1980), 199-211.
[F] FRIEDMAN, A., On the uniqueness of the Cauchy problem for parabolic equations. Amer. J. Math., 81 (1959), 503-511.
[G1] GROMOV, M., PAUL Levy's isoperimetric inequality. IHES preprint.
[G2] GROMOV, M., Curvature, diameter, and Betti numbers. Comment Math. Helv., 56 (1981), 179-197.
[G-M] GALLOT, S. & MEYER, D., Operateur de courbure et Laplacien des formes differentielles d'une variet\acutee Riemannienne. J. Math. Pures Appl., 54 (1975), 259-284.
[K-L] KARP, L., & LI, P., The heat equation on complete Riemannian manifolds. Preprint.
[L-T] LI, P. & TAM, L. T., Symmetric Green's functions on complete manifolds, Amer. J. Math., 109 (1987) 1129-1154.
[L-Y1] LI, P. & YAU, S. T., Estimates of eigenvalues of a compact Riemannian manifold. Proc. Sympos. Pure Math., 36 (1980), 205-239.
[L-Y2] LI, P.& YAU, S. T., On the parabolic kernel of the Schrodinger operator. Math. and Stat., (1984), 153-201.
[M1] MEYER, D., Un lemme de geometrie Hilbertienne et des applications a la geometrie Riemannienne. C.R. Acad. Sci. Paris, 295 (1982), 467-469.
[M2] MEYER, D., Sur les hypersurfaces minimales des varietes Riemanniennes a courbure de Ricci positive ou nulle. Bull. Soc. Math. France, 111 (1983), 359-366.
[M-M] MAUREY, B. & MEYER, D., Un lemma de geometrie Hilbertienne et des applications a la geometrie Riemannienne. Preprint.
[Mo] MOSER, J., A Harnack inequality for parabolic equations. Comm. Pure Appl. Math., 17 (1964), 101-134.
[R-Y] R. Schoen & Yau, S. T., Lectures on Differential Geometry. International Press Incorporated (1994).
[S] Serrin, J. B., A uniqueness theorem for the parabolic equation u_{t}=a(x)u_{xx}+b(x)u_{x}+c(x)u. Bull. Amer. Math. Soc., 60 (1954), 344.
[Si] Simon, B., Instantons, double wells and large derivations. Bull. Amer. Math. Soc., 8(1983), 323-326.
[Su] Sung C.J.A., A note on the existence of positive Green's functions J. of functional Anal., 156 (1998), 199-207.
[V1] VAROPOULOS, N., The Poisson kernel on positively curved manifolds. J. Funct. Anal., 44 (1981), 359-380.
[V2] VAROPOULOS, N., Green's functions on positively curved manifolds. J. Funct. Anal., 45 (1982), 109-118.
[W] Widder, D. V., Positive temperature on the infinite rod. Trans. Amer. Math. Soc., 55 (1944), 85-95.
[Y1] Yau, S. T., Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math., 28 (1975), 201-228.
[Y2] Yau, S. T., Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J., 25 (1976), 659-670.