研究生: |
許 寧 Hsu, Ning |
---|---|
論文名稱: |
哺乳類TRPC4蛋白和回聲物種Prestin蛋白在超音波感應中所扮演的角色 The roles of mammalian TRPC4 proteins and Prestin proteins from sonar species in ultrasound sensing |
指導教授: |
林玉俊
Lin, Yu-Chun |
口試委員: |
葉秩光
Yeh, Chih-Kuang 陳令儀 Chen, Linyi |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 聲波遺傳學 、超音波 |
外文關鍵詞: | TRPC4 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
化學遺傳學、光遺傳學和磁場遺傳學等多方技術的進步促進了神經科學研究的進展,這些基因工程工具分別利用改造過的配位基、光子和磁場來調控細胞的活性,進而解決神經科學上的重要問題並定位出作用在腦中的神經迴路。然而,這些技術皆有其無法避免的缺點:刺激源無法深入位於腦部深層的神經細胞。為了突破此限制,我們嘗試利用擁有非侵入性、聚焦性和高穿透力的超音波來達成我們的目標,其中一個重要的步驟為篩選出能夠幫助細胞感應超音波並引發下游反應的蛋白質,在我們近期的研究中發現Prestin蛋白能擔任此關鍵角色,其原為作用在哺乳類聽覺系統中的穿膜蛋白質,在運用超音波溝通的物種中,保守序列第7個和第308個氨基酸由天冬醯胺分別被置換成蘇氨酸和絲氨酸的比例相當高,將小鼠的Prestin蛋白質在兩位置做點突變並大量表現可以提高人類細胞對於超音波刺激的敏銳度。除了突變的Prestin(N7T, N308S)蛋白質,我們為了提升聲波遺傳學的技術也試圖找尋更有效率的超音波感應蛋白,因前人研究發現TRP4參與作用在線蟲對超音波的偵測,我們測試了2種哺乳類動物所屬的TRPC4蛋白質,同時另外研究了4種以回聲定位的蝙蝠身上的Prestin蛋白質,以及仿磷酸化、去磷酸化狀態的Prestin蛋白質以探討磷酸化的重要性。實驗結果顯示,小鼠的TRPC4蛋白、去磷酸化Prestin蛋白與人類的Prestin(N7T, N308S) 蛋白質能成功幫助細胞對超音波刺激做出反應,人類TRPC4蛋白、小鼠仿磷酸化Prestin蛋白和回聲物種Prestin蛋白則無法作為超音波感應蛋白。我們的研究成果證實了TRPC4蛋白及Prestin蛋白和細胞超音波感應的關係,並提供未來去進一步提升聲波遺傳學的可能研究方向。
The progression of neuroscience has been facilitated by the development of several approaches such as chemogenetics, optogenetics, and magnetogentics. These genetically encoded tools use engineering ligands, photon, and magnetic field, respectively, to manipulate cellular activities and have addressed a number of fundamental questions in neuroscience as well as have mapped the functional circuits in the brain. However, there are inevitable drawbacks to them: it is challenging for the stimuli to access to targeted neurons located in deeper brain regions. To circumvent these long-standing limitations, we attempt to use ultrasound, which is noninvasive, focused, and has great depth of penetration, to perturb neuronal activities. One strategy we make use of is the identification of the ultrasound-responsive proteins. Our recent results have demonstrated that the prestin, a transmembrane protein which resides in the mammalian auditory system, act as an ultrasound-responsive protein. Expression of prestin carried with N7T and N308S, two amino acid substitution frequently exist in echolocating species, endows transfected mammalian cells with ultrasound sensitivity. Besides the Prestin(N7T, N308S), one previous study also found that TRP4 is involved in ultrasound sensing of C. elegans. To strengthen the efficiency of our sonogenetic system, we here aimed to explore other ultrasound-responsive proteins with better ultrasound sensitivity. We have characterized two mammalian TRPC4 proteins, prestin proteins from four sonar bats and prestin variants with different phosphomimetic statuses. Our results confirmed that mouse TRPC4β, mouse Prestin(N7A, N308A), human Prestin(N7T, N308S) but not human TRPC4α, mouse Prestin(N7D, N308D), or prestin variants from four sonar bats act as ultrasound-responsive proteins to make cells excitable to ultrasound stimulation. The data obtained here provides new insights of how TRPC4 protein and prestin affect the ultrasound sensitivity and also gives clues to modify the Prestin(N7T, N308S) for further improving the efficiency of our sonogenetic system.
Akbulut, Y. et al. (2015) ‘Englerin a is a potent and selective activator of TRPC4 and TRPC5 calcium channels’, Angewandte Chemie - International Edition, 54(12), pp. 3787–3791. doi: 10.1002/anie.201411511.
Dallos, P. andFakler, B. (2002) ‘Prestin, a new type of motor protein.’, Nature reviews. Molecular cell biology, 3(2), pp. 104–111. doi: 10.1038/nrm730.
Etoc, F. et al. (2015) ‘Magnetogenetic Control of Protein Gradients Inside Living Cells with High Spatial and Temporal Resolution’, Nano Letters, p. 150428133855000. doi: 10.1021/acs.nanolett.5b00851.
Fan, Z. et al. (2012) ‘Spatiotemporally controlled single cell sonoporation’, Proceedings of the National Academy of Sciences, 109(41), pp. 16486–16491. doi: 10.1073/pnas.1208198109.
Fettiplace, R. andHackney, C. M. (2006) ‘The sensory and motor roles of auditory hair cells.’, Nature reviews. Neuroscience, 7(1), pp. 19–29. doi: 10.1038/nrn1828.
Grosenick, L., Marshel, J. H. andDeisseroth, K. (2015) ‘Closed-loop and activity-guided optogenetic control’, Neuron. Cell Press, pp. 106–139.
Hegemann, P. andNagel, G. (2013) ‘From channelrhodopsins to optogenetics’, EMBO Molecular Medicine, 5(2), pp. 173–176. doi: 10.1002/emmm.201202387.
Huang, Y.-S. et al. (2020) ‘Sonogenetic modulation of cellular activities using an engineered auditory-sensing protein’, Nano Letters, p. 625533. doi: 10.1101/625533.
Ibsen, S. et al. (2015) ‘Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans’, Nature Communications. Nature Publishing Group, 6, pp. 1–12. doi: 10.1038/ncomms9264.
King, R. L. et al. (2013) ‘Effective parameters for ultrasound-induced in vivo neurostimulation’, Ultrasound in Medicine and Biology, 39(2), pp. 312–331. doi: 10.1016/j.ultrasmedbio.2012.09.009.
Leibiger, I. B. andBerggren, P. (2015) ‘Regulation of glucose homeostasis using radiogenetics and magnetogenetics in mice’, Nature Publishing Group. Nature Publishing Group, 21(1), pp. 14–16. doi: 10.1038/nm.3782.
Liu, Z. et al. (2014) ‘Parallel Sites Implicate Functional Convergence of the Hearing Gene Prestin among Echolocating Mammals.’, Molecular biology and evolution, 31(9), pp. 2415–2424. doi: 10.1093/molbev/msu194.
Long, X. et al. (2015) ‘Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor’, Science Bulletin. Science China Press, 60(24), pp. 2107–2119. doi: 10.1007/s11434-015-0902-0.
Ludwig, J. et al. (2001) ‘Reciprocal electromechanical properties of rat prestin: the motor molecule from rat outer hair cells.’, Proceedings of the National Academy of Sciences of the United States of America, 98(7), pp. 4178–4183. doi: 10.1073/pnas.071613498.
Marino, A. et al. (2015) ‘Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation’, ACS Nano, 9(7), pp. 7678–7689. doi: 10.1021/acsnano.5b03162.
McKay, R. R. et al. (2000) ‘Cloning and expression of the human transient receptor potential 4 (TRP4) gene: localization and functional expression of human TRP4 and TRP3’, Biochem J, 351 Pt 3, pp. 735–746. doi: 10.1042/0264-6021:3510735.
Meijering, B. D. M. et al. (2009) ‘Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation’, Circulation Research, 104(5), pp. 679–687. doi: 10.1161/CIRCRESAHA.108.183806.
Meister, M. (2013) ‘Physical limits to magnetogenetics’, Journal of Chemical Information and Modeling, 53(9), pp. 1689–1699. doi: 10.1017/CBO9781107415324.004.
Menz, M. D. et al. (2013) ‘Precise neural stimulation in the retina using focused ultrasound.’, The Journal of Neuroscience, 33(10), pp. 4550–4560. doi: 10.1523/JNEUROSCI.3521-12.2013.
Myeong, J. et al. (2014) ‘Identification of a membrane-targeting domain of the transient receptor potential canonical (TRPC)4 channel unrelated to its formation of a tetrameric structure’, Journal of Biological Chemistry, 289(50), pp. 34990–35002. doi: 10.1074/jbc.M114.584649.
Myeong, J. et al. (2015) ‘Close Spatio-Association of Transient Receptor Potential Canonical (TRPC)4 channel with G$α$$\$n i$\$n in TRPC4 activation process’, American Journal of Physiology - Cell Physiology, 4, p. ajpcell.00374.2014. doi: 10.1152/ajpcell.00374.2014.
Pan, Y. et al. (2018) ‘Mechanogenetics for the remote and noninvasive control of cancer immunotherapy’, Proceedings of the National Academy of Sciences, 115(16), p. 201714900. doi: 10.1073/pnas.1714900115.
Qin, S. et al. (2015) ‘A magnetic protein biocompass’, Nature Materials, 15(2), pp. 217–226. doi: 10.1038/nmat4484.
Rossiter, S. J., Zhang, S. andLiu, Y. (2011) ‘Prestin and high frequency hearing in mammals’, Communicative and Integrative Biology. doi: 10.4161/cib.4.2.14647.
Schaefer, M. et al. (2002) ‘Functional Differences between TRPC4 Splice Variants *’, 277(5), pp. 3752–3759. doi: 10.1074/jbc.M109850200.
Stanley, S. A. et al. (2015) ‘Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles’, Nature Medicine, 21(1), pp. 92–98. doi: 10.1038/nm.3730.
Sternson, S. M. andRoth, B. L. (2014) ‘Chemogenetic Tools to Interrogate Brain Functions.’, Annual review of neuroscience, (June), pp. 387–407. doi: 10.1146/annurev-neuro-071013-014048.
Szobota, S. andIsacoff, E. Y. (2010) ‘Optical control of neuronal activity.’, Annual review of biophysics, 39, pp. 329–348. doi: 10.1146/annurev.biophys.093008.131400.
Toxikologie, P. andSaarlandes, U. (2007) ‘Ionic Channels Formed by TRPC4’, 4, pp. 93–108.
Tufail, Y. et al. (2010) ‘Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits’, Neuron. Elsevier Ltd, 66(5), pp. 681–694. doi: 10.1016/j.neuron.2010.05.008.
Tufail, Y. et al. (2011) ‘Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound.’, Nature protocols. Nature Publishing Group, 6(9), pp. 1453–1470. doi: 10.1038/nprot.2011.371.
Tyler, W. J. et al. (2008) ‘Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound’, PLoS ONE, 3(10). doi: 10.1371/journal.pone.0003511.
Tyler, W. J. (2011) ‘Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis.’, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 17(1), pp. 25–36. doi: 10.1177/1073858409348066.
Vogt, N. (2016) ‘Neuroscience: Manipulating neurons with magnetogenetics’, Nature Methods. Nature Publishing Group, 13(5), p. 394. doi: 10.1038/nmeth.3857.
Wheeler, M. A. et al. (2016) ‘Genetically targeted magnetic control of the nervous system’, Nat Neurosci, 19(5), pp. 756–761. doi: 10.1038/nn.4265.
Y, L. M. et al. (2001) ‘Alternative splice variants of hTrp4 di ¡ erentially interact with the C-terminal portion of the inositol 1 , 4 , 5-trisphosphate receptors’, 487.
Yizhar, O. et al. (2011) ‘Optogenetics in Neural Systems’, Neuron. Elsevier Inc., 71(1), pp. 9–34. doi: 10.1016/j.neuron.2011.06.004.
Yoo, S. S. et al. (2011) ‘Focused ultrasound modulates region-specific brain activity’, NeuroImage. Elsevier Inc., 56(3), pp. 1267–1275. doi: 10.1016/j.neuroimage.2011.02.058.