研究生: |
曾開一 Zeng, Kai Yi |
---|---|
論文名稱: |
基於Cascade SVM之平行化AdaBoost分類器之研究 A Study on Parallel AdaBoost with Cascade SVM-based Component Classifier |
指導教授: |
胡殿中
Hu, Tien Chung |
口試委員: |
呂理裕
LEU, LII YUH 趙一峰 Chao, I Feng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 30 |
中文關鍵詞: | adaboost 、支撐向量機 |
外文關鍵詞: | adaboost, support vector machine |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以兩種演算法來檢驗動態調整 C 值在資料分類上的影響,探討其正確率和計算時間之表現。過去的研究顯示:(一)使用整體演算法能提高模型分類準確率。(二)將資料分批以分散式平行運算,能有效降低運算時間。(三)透過調整 C 值所得之分類器模型會有所不同。本論文共執行兩種實例分析演算法於數位化手寫數字資料庫(MNIST database)上。實例分析(一)演算法為 AdaBoostCascadeSVM.PL,結果發現動態調整 C 值,能有效地降低22~30程式運算時間,且 C 值為 25 與 50 時,能得到與無動態調整相近之分類準確率。實例分析(二)演算法為 AdaBoostCascadeRVM.PL,結果發現其演算法之核心 RVM 在處理大型資料因時間複雜度過高,有運算時間過長之問題。
In this thesis, we use two algorithms, AdaBoostCascadeSVM.PL and AdaBoostCascadeRVM.PL, which to verify the effect of classification with dynamic adjustment C value, and observe the performance of accuracy and computation time. In AdaBoostCascadeSVM.PL, classification with dynamic adjustment C value can save 22~30 computation time, and receive the similar accuracy when C value equal 25 and 50. On the other hand, the complexity of AdaBoostCascadeRVM.PL is too high to obtain classifier efficiently.
[1] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin clas- sifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pages 144–152. ACM Press, 1992.
[2] L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.
[3] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[4] R. Collobert, Y. Bengio, and S. Bengio. A parallel mixture of svms for very large scale problems. Neural Computation, 14(5):1105–1114, 2002.
[5] C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:1–25, 1995.
[6] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn- ing and an application to boosting. Journal of Computer and System Sciences, 55:119–139, 1995.
[7] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vapnik. Parallel support vector machines: The cascade svm. Advances in Neural Information Processing Systems, 17:521–528, 2005.
[8] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vapnik. Scalable and parallel boosting with mapreduce. IEEE Transactions on Knowledge and Data Engineering, 24(10):1904–1916, 2012.
[9] L. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:993–1001, 1990.
[10] R. Maclin and D. Opitz. Popular ensemble methods: An empirical study. Journal Of Artificial Intelligence Research, 11:169–198, 1999.
[11] R. E. Schapire. The strength of weak learnability. Machine Learning, (2):197– 227, 1990.
[12] M. E. Tipping. Sparse bayesian learning and the relevance vector machine. Jour- nal of Machine Learning Research, 1:211–244, 2001.
[13] L. Xuchun, W. Lei, and S. Eric. Adaboost with svm-based component classifiers. Engineering Applications of Artificial Intelligence, 21:785–795, 2008.