簡易檢索 / 詳目顯示

研究生: 溫少瑜
論文名稱: 以熔鹽合成法製備鈦酸鋇奈米線及其鐵磁與電容特性之研究
Ferromagnetism , Electrical Properties of Barium Titanate Nanowires Synthesized by Molten Salt Method
指導教授: 林樹均
口試委員: 張守一
李勝隆
楊智富
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 110
中文關鍵詞: 奈米線鈦酸鋇
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以 K2Ti4O9 奈米線為反應前驅物,與 BaCO3 粉末在共晶鹽 KCl - NaCl 中以熔鹽合成法透過離子置換過程成功製備出 BaTiO3 奈米線。實驗結果顯示,當反應溫度為 670 C 、反應 1 小時、共晶鹽 KCl 與 NaCl 重量比為 W=0.1時可獲得最佳長徑比與表面形貌之奈米線,長度可達數十微米,平均線徑為 400 奈米,並藉由 X 光繞射儀與穿透式電子顯微鏡鑑定其晶體結構與微結構、歐傑電子能譜儀則進行成分分析,最後可確認反應所得產物為 BaTiO3 奈米線。
      本實驗中 BaTiO3 奈米線成長機制是透過 K2Ti4O9 奈米線中的鉀離子與 BaCO3 中的鋇離子在液相共晶鹽進行離子置換反應而成,由 XPS 分析結果得到 BaTiO3 奈米線中有氧空缺存在,並可由 Ti3+ 之形成加以佐證。另外,透過 SQUID 量測得知 BaTiO3 奈米線具有鐵磁性,且在大氣下進行不同時間之熱處理,會得到不同飽和磁化量,說明一維奈米材料表面氧空缺對鐵磁性之影響。 最後從 I-V 與 C-V 曲線說明所得奈米線表面氧缺陷對奈米線電性與電容密度之影響。


    摘要 I 致謝 II 目錄 V 圖目錄 IX 一、前言 1 二、文獻回顧 3 2.1. 奈米科技的發展 3 2.2. 一維 (one dimensional,1-D) 奈米材料 4 2.3. 奈米線的合成 5 2.3.1. 模板合成法 (template-directed synthesis) 6 2.3.2. 溶液-液相-固相法 (Solution-Liquid-Solid Method, SLS) 6 2.3.3. 水熱化學合成法 (hydrothermal chemical synthesis) 7 2.3.4. 溶膠凝膠 (sol-gel) 法 8 2.3.5. 熔鹽合成法 (molten-salt synthesis) 8 2.4. K-Ti-O 系統之結構與特性 13 2.4.1. K2Ti4O9 之結構與特性 14 2.5. Ba-Ti-O 系統之結構與介電性質 16 2.5.1. BaTiO3 之結構與介電特性 16 2.5.2. 介電原理 22 2.5.3. 多鐵性質 (multiferroic) 材料 25 2.5.4. 目前一維 BaTiO3 奈米線之應用 26 2.5.5. 尺寸效應對 BaTiO3 鐵磁性與介電常數之影響 29 三、實驗步驟 33 3.1. 實驗流程 33 3.1.1. K2Ti4O9 奈米線的合成 35 3.1.2. 熔鹽合成法 36 3.2. 使用之儀器 38 3.2.1. 真空高溫爐 38 3.2.2. 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope, FESEM) 39 3.2.3. 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 39 3.2.4. 能量散射光譜儀 (Energy Dispersive X-ray Spectroscopy, EDS) 40 3.2.5. 電子能譜儀 (X-ray photoelectron spectrum, XPS) 40 3.2.6. X-ray 繞射分析 41 3.2.7. 奈米級歐傑電子能譜儀 (Auger Electron Nanoscopy, Nanoauger) 42 3.2.8. 超導量子干涉儀 (Superconducting Quantum Interference Device, SQUID) 42 3.2.9. 聚焦離子束與電子束顯微系統 (Focus Ion Beam, FIB) 42 3.2.10. 半導體參數量測儀 43 四、 結果與討論 45 4.1. K2Ti4O9 奈米線的成長 45 4.1.1. K2Ti4O9 奈米線的合成 45 4.1.2. K2Ti4O9 奈米線微結構探討與成分分析 47 4.2. 以多元共晶鹽系統合成 BaTiO3 奈米線 51 以 BaCl2-NaCl 或 BaCl2-KCl 共晶鹽合成奈米線 51 以 CaCl2-NaCl 或 CaCl2-LiCl為共晶鹽合成奈米線 52 以 LiCl-NaCl 或 KCl-LiCl 為共晶鹽合成奈米線 52 以 KCl-NaCl 為共晶鹽合成奈米線 53 4.3. 探討不同反應參數對 BaTiO3 奈米線之影響 61 4.3.1. 共晶鹽重量比對奈米線成長之影響 61 4.3.2. 反應溫度對奈米線成長之影響 66 4.3.3. 反應時間對奈米線成長之影響 70 4.4. BaTiO3 奈米線之微結構探討與成分分析 74 4.5. BaTiO3 奈米線之成長機制 77 4.6. XPS 定性分析 84 4.7. BaTiO3 奈米線鐵磁性質之研究 90 4.8. BaTiO3 奈米線電性探討之研究 94 五、 結論 101 六、未來研究方向 103 七、參考文獻 104

    [1] H. S. Nalwa, Handbook of nanostructured materials and nanotechnology. San Diego: Academic Press, 2000.
    [2] V. M. Shalaev and M. Moskovits, Nanostructured materials : clusters, composites, and thin films. Washington, DC: American Chemical Society, 1997.
    [3] A. S. Edelstein and R. C. Cammarata, Nanomaterials : synthesis, properties, and applications. Bristol ; Philadelphia: Institute of Physics Pub., 1996.
    [4] M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, "The quantum-mechanics of larger semiconductor clusters (Quantum Dots)," Annu. Rev. Phys. Chem., vol. 41, pp. 477-496, 1990.
    [5] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, Nov 1991.
    [6] Q. Yong, W. Xudong, and W. Zhong Lin, "Microfibre–nanowire hybrid structure for energy scavenging," Nature, vol. 451, pp. 809-813, 2008.
    [7] C. R. Martin, "Nanomaterials - a membrane-based synthetic approach," Science, vol. 266, pp. 1961-1966, Dec 1994.
    [8] R. V. K. Mangalam, N. Ray, U. V. Waghmare, A. Sundaresan, and C. N. R. Rao, "Multiferroic properties of nanocrystalline BaTiO3," Solid State Commun., vol. 149, pp. 1-5, Jan 2009.
    [9] P. Yang, Y. Wu, and R. Fan, "Inorganic semiconductor nanowires," International Journal of Nanoscience, vol. 1, pp. 1-39, 2002.
    [10] C. G. Wu and T. Bein, "Conducting carbon wires in ordered, nanometer-sized channels," Science, vol. 266, pp. 1013-1015, Nov 1994.
    [11] B. Gates, Y. Y. Wu, Y. D. Yin, P. D. Yang, and Y. N. Xia, "Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se," J. Am. Chem. Soc., vol. 123, pp. 11500-11501, Nov 2001.
    [12] T. J. Trentler, S. C. Goel, K. M. Hickman, A. M. Viano, M. Y. Chiang, A. M. Beatty, P. C. Gibbons, and W. E. Buhro, "Solution−Liquid−Solid Growth of Indium Phosphide Fibers from Organometallic Precursors:  Elucidation of Molecular and Nonmolecular Components of the Pathway," J. Am. Chem. Soc., vol. 119, pp. 2172-2181, 1997/03/01 1997.
    [13] P. D. Markowitz, M. P. Zach, P. C. Gibbons, R. M. Penner, and W. E. Buhro, "Phase Separation in AlxGa1-xAs Nanowhiskers Grown by the Solution−Liquid−Solid Mechanism," J. Am. Chem. Soc., vol. 123, pp. 4502-4511, 2001/05/01 2001.
    [14] O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff, and W. E. Buhro, "CVD Growth of Boron Nitride Nanotubes," Chem. Mat., vol. 12, pp. 1808-1810, 2000/07/01 2000.
    [15] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, "Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth," Science, vol. 270, pp. 1791-1794, December 15, 1995 1995.
    [16] Y. Mao, T. J. Park, F. Zhang, H. Zhou, and S. S. Wong, "Environmentally friendly methodologies of nanostructure synthesis," Small, vol. 3, pp. 1122-1139, Jul 2007.
    [17] U. A. Joshi and J. S. Lee, "Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires," Small, vol. 1, pp. 1172-1176, Dec 2005.
    [18] B. A. Hernandez, K. S. Chang, E. R. Fisher, and P. K. Dorhout, "Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes," Chem. Mat., vol. 14, pp. 480-482, Feb 2002.
    [19] K. H. Yoon, Y. S. Cho, and D. H. Kang, "Molten salt synthesis of lead-based relaxors," J. Mater. Sci., vol. 33, pp. 2977-2984, Jun 1998.
    [20] C. Sikalidis, Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications: InTech, pp. 80, 2011.
    [21] W. Z. Wang, Y. J. Zhan, X. S. Wang, Y. K. Liu, C. L. Zheng, and G. H. Wang, "Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant," Mater. Res. Bull., vol. 37, pp. 1093-1100, May 2002.
    [22] Y. Wang and J. Y. Lee, "Molten salt synthesis of tin oxide nanorods: Morphological and electrochemical features," J. Phys. Chem. B, vol. 108, pp. 17832-17837, Nov 2004.
    [23] W. Z. Wang, C. K. Xu, G. H. Wang, Y. K. Liu, and C. L. Zheng, "Preparation of smooth single-crystal Mn3O4 nanowires," Adv. Mater., vol. 14, pp. 837-840, Jun 2002.
    [24] Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, and G. H. Wang, "Synthesis and characterization of rutile SnO2 nanorods," Adv. Mater., vol. 13, pp. 1883-1887, Dec 2001.
    [25] C. Y. Xu, Q. Zhang, H. Zhang, L. Zhen, J. Tang, and L. C. Qin, "Synthesis and characterization of single-crystalline alkali titanate nanowires," J. Am. Chem. Soc., vol. 127, pp. 11584-11585, Aug 2005.
    [26] T. Zaremba, "Investigation on synthesis and microstructure of potassium tetratitanate," J. Therm. Anal. Calorim., vol. 91, pp. 911-913, Mar 2008.
    [27] S. Yin, S. Uchida, Y. Fujishiro, M. Aki, and T. Sato, "Phase transformation of protonic layered tetratitanate under solvothermal conditions," J. Mater. Chem., vol. 9, pp. 1191-1195, May 1999.
    [28] H. Izawa, S. Kikkawa, and M. Koizumi, "Ion-exchange and dehydration of layered titanates, Na2Ti3O7 and K2Ti4O9," J. Phys. Chem., vol. 86, pp. 5023-5026, 1982.
    [29] N. Z. Bao, X. Feng, X. H. Lu, and Z. H. Yang, "Study on the formation and growth of potassium titanate whiskers," J. Mater. Sci., vol. 37, pp. 3035-3043, Jul 2002.
    [30] S. O. Kang, B. H. Park, and Y. I. Kim, "Growth mechanism of shape-controlled barium titanate nanostructures through soft chemical reaction," Cryst. Growth Des., vol. 8, pp. 3180-3186, Sep 2008.
    [31] T. W. Kim, Y. S. Yoon, S. S. Yom, and C. O. Kim, "Ferroelectric BaTiO3 films with a high-magnitude dielectric constant grown on p-Si by low-pressure metalorganic chemical vapor deposition," Applied Surface Science, vol. 90, pp. 75-80, 1995.
    [32] S. Lee, C. A. Randall, and Z. K. Liu, "Modified phase diagram for the barium oxide-titanium dioxide system for the ferroelectric barium titanate," J. Am. Ceram. Soc., vol. 90, pp. 2589-2594, Aug 2007.
    [33] 劉國雄、鄭晃忠、李勝隆、林樹均、葉均蔚, 工程材料科學: 全華科技圖書股份有限公司, pp. 421, 2006.
    [34] Y. H. Zhang, J. W. Hong, B. Liu, and D. N. Fang, "Strain effect on ferroelectric behaviors of BaTiO3 nanowires: a molecular dynamics study," Nanotechnology, vol. 21, Jan 2010.
    [35] J. K. W. L. L. Hench, "Principles of electronic ceramics," John Wiley & Sons, New York, 1990.
    [36] Y. H. Xu., Ferroelectric Materials and Their Application. New York: North-Holland, 1991.
    [37] G. K. Sahoo, "Synthesis and characterization of BaTiO3 Prepared by Molten Salt Synthesis Method," 印度國立理工學院魯爾克拉分校陶瓷工程學系碩士論文.
    [38] 蘇俊豪, "以鈦酸鉀奈米線為前驅物合成鈦酸鋇奈米結構之研究," 國立清華大學材料科學及工程學系碩士論文, 2011.
    [39] 林振華, 電子材料: 全華科技圖書股份有限公司, 2001.
    [40] A. J. M. a. J. M. Herbert, Electroceramics: Materials, Properties, Applications Wiley; 2 edition, 2003.
    [41] 陳瀅如, "添加微細粉對鈦酸鉛鍍膜製程與特性之研究," 清華大學碩士論文, 1998.
    [42] B. Im, U. A. Joshi, K. H. Lee, and J. S. Lee, "Growth of single crystalline barium titanate nanowires from TiO 2 seeds deposited on conducting glass," Nanotechnology, vol. 21, p. 425601, 2010.
    [43] M. Wang, G. L. Tan, and Q. J. Zhang, "Multiferroic properties of nanocrystalline PbTiO3 ceramics," J. Am. Ceram. Soc., vol. 93, pp. 2151-2154, Aug 2010.
    [44] A. Sundaresan and C. N. R. Rao, "Ferromagnetism as a universal feature of inorganic nanoparticles," Nano Today, vol. 4, pp. 96-106, 2009.
    [45] A. G. Schrott, J. A. Misewich, V. Nagarajan, and R. Ramesh, "Ferroelectric field-effect transistor with a SrRuxTi1-xO3 channel," Appl. Phys. Lett., vol. 82, pp. 4770-4772, Jun 2003.
    [46] J. Yuk and T. Troczynski, "Sol–gel BaTiO3 thin film for humidity sensors," Sensors and Actuators B: Chemical, vol. 94, pp. 290-293, 2003.
    [47] Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, and J. Zhao, "Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning," Sensors and Actuators B: Chemical, vol. 146, pp. 98-102, 2010.
    [48] R. Bogue, "Energy harvesting and wireless sensors: a review of
    recent developments," Sensor Review, vol. 29, p. 194, 2009.
    [49] L. Neel, Ed., Low Temperature Physics. Lectures Delivered at Les Houches During the 1961 Session of the Summer School of Theoretical Physics, University of Grenoble: Gordon and Beach,New York, 1962, p.^pp. Pages.
    [50] M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, "Unexpected magnetism in a dielectric oxide," Nature, vol. 430, pp. 630-630, Aug 2004.
    [51] N. H. Hong, J. Sakai, N. Poirot, and V. Brizé, "Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films," Phys. Rev. B, vol. 73, p. 132404, 2006.
    [52] N. H. Hong, J. Sakai, and V. Brizé, "Observation of ferromagnetism at room temperature in ZnO thin films," Journal of Physics: Condensed Matter, vol. 19, p. 036219, 2007.
    [53] H. K. W. Heywang, "Depolarization effects in polycrystalline BaTiO3," Z. Angew. Phys., 6, pp. 385-390, 1954.
    [54] G. Arlt, D. Hennings, and G. Dewith, "Dielectric-properties of fine-grained barium-titanate ceramics," J. Appl. Phys., vol. 58, pp. 1619-1625, 1985.
    [55] K. Uchino, E. Sadanaga, and T. Hirose, "Dependence of the crystal-structure on particle-size in barium-titanate," J. Am. Ceram. Soc., vol. 72, pp. 1555-1558, Aug 1989.
    [56] M. K. Lei, Y. X. Ou, K. S. Wang, and L. Chen, "Wear and corrosion properties of plasma-based low-energy nitrogen ion implanted titanium," Surface and Coatings Technology, vol. 205, pp. 4602-4607, 2011.
    [57] H. Song, H. Jiang, T. Liu, X. Liu, and G. Meng, "Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n+1 (A=Li, Na and K)," Mater. Res. Bull., vol. 42, pp. 334-344, 2007.
    [58] C. Xu, Y. D. Xia, Z. G. Liu, and X. K. Meng, "Chemical states change at (Ba,Sr)TiO3/Pt interfaces investigated by x-ray photoelectron spectroscopy," J. Phys. D-Appl. Phys., vol. 42, Apr 2009.
    [59] W. Cui, S. Ma, L. Liu, J. Hu, and Y. Liang, "CdS-sensitized K2Ti4O9 composite for photocatalytic hydrogen evolution under visible light irradiation," Journal of Molecular Catalysis A: Chemical, vol. 359, pp. 35-41, 2012.
    [60] U. A. Joshi, S. Yoon, S. Baik, and J. S. Lee, "Surfactant-Free Hydrothermal Synthesis of Highly Tetragonal Barium Titanate Nanowires:  A Structural Investigation," The Journal of Physical Chemistry B, vol. 110, pp. 12249-12256, 2006/06/01 2006.
    [61] M. Wegmann, L. Watson, and A. Hendry, "XPS analysis of submicrometer barium titanate powder," J. Am. Ceram. Soc., vol. 87, pp. 371-377, Mar 2004.
    [62] S. Kumar, V. S. Raju, and T. R. N. Kutty, "Preparation of BaTi4O9 and Ba2Ti9O20 ceramics by the wet chemical gel-carbonate method and their dielectric properties," Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 142, pp. 78-85, Sep 2007.
    [63] S. Tsunekawa, K. Ishikawa, Z. Q. Li, Y. Kawazoe, and A. Kasuya, "Origin of anomalous lattice expansion in oxide nanoparticles," Phys. Rev. Lett., vol. 85, pp. 3440-3443, Oct 2000.
    [64] D. Cao, M. Q. Cai, Y. Zheng, and W. Y. Hu, "First-principles study for vacancy-induced magnetism in nonmagnetic ferroelectric BaTiO3," Phys. Chem. Chem. Phys., vol. 11, pp. 10934-10938, 2009.
    [65] S. Mochizuki, F. Fujishiro, and S. Minami, "Photoluminescence and reversible photo-induced spectral change of SrTiO3," J. Phys.-Condes. Matter, vol. 17, pp. 923-948, Feb 2005.
    [66] S. B. Qin, D. Liu, Z. Y. Zuo, Y. H. Sang, X. L. Zhang, F. F. Zheng, H. Liu, and X. G. Xu, "UV-irradiation-enhanced ferromagnetism in BaTiO3," J. Phys. Chem. Lett., vol. 1, pp. 238-241, Jan 2010.
    [67] D. I. Woodward, I. M. Reaney, G. Y. Yang, E. C. Dickey, and C. A. Randall, "Vacancy ordering in reduced barium titanate," Appl. Phys. Lett., vol. 84, pp. 4650-4652, Jun 2004.
    [68] D. C. Cronemeyer, "Electrical and Optical Properties of Rutile Single Crystals," Physical Review, vol. 87, pp. 876-886, 1952.
    [69] 魏均穎, "Effect of La2O3 and Cooling Rate on the PTCR and Conduction Bahavior of BaTiO3," 國立成功大學材料科學及工程學系碩士論文, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE