研究生: |
溫少瑜 |
---|---|
論文名稱: |
以熔鹽合成法製備鈦酸鋇奈米線及其鐵磁與電容特性之研究 Ferromagnetism , Electrical Properties of Barium Titanate Nanowires Synthesized by Molten Salt Method |
指導教授: | 林樹均 |
口試委員: |
張守一
李勝隆 楊智富 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 奈米線 、鈦酸鋇 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以 K2Ti4O9 奈米線為反應前驅物,與 BaCO3 粉末在共晶鹽 KCl - NaCl 中以熔鹽合成法透過離子置換過程成功製備出 BaTiO3 奈米線。實驗結果顯示,當反應溫度為 670 C 、反應 1 小時、共晶鹽 KCl 與 NaCl 重量比為 W=0.1時可獲得最佳長徑比與表面形貌之奈米線,長度可達數十微米,平均線徑為 400 奈米,並藉由 X 光繞射儀與穿透式電子顯微鏡鑑定其晶體結構與微結構、歐傑電子能譜儀則進行成分分析,最後可確認反應所得產物為 BaTiO3 奈米線。
本實驗中 BaTiO3 奈米線成長機制是透過 K2Ti4O9 奈米線中的鉀離子與 BaCO3 中的鋇離子在液相共晶鹽進行離子置換反應而成,由 XPS 分析結果得到 BaTiO3 奈米線中有氧空缺存在,並可由 Ti3+ 之形成加以佐證。另外,透過 SQUID 量測得知 BaTiO3 奈米線具有鐵磁性,且在大氣下進行不同時間之熱處理,會得到不同飽和磁化量,說明一維奈米材料表面氧空缺對鐵磁性之影響。 最後從 I-V 與 C-V 曲線說明所得奈米線表面氧缺陷對奈米線電性與電容密度之影響。
[1] H. S. Nalwa, Handbook of nanostructured materials and nanotechnology. San Diego: Academic Press, 2000.
[2] V. M. Shalaev and M. Moskovits, Nanostructured materials : clusters, composites, and thin films. Washington, DC: American Chemical Society, 1997.
[3] A. S. Edelstein and R. C. Cammarata, Nanomaterials : synthesis, properties, and applications. Bristol ; Philadelphia: Institute of Physics Pub., 1996.
[4] M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, "The quantum-mechanics of larger semiconductor clusters (Quantum Dots)," Annu. Rev. Phys. Chem., vol. 41, pp. 477-496, 1990.
[5] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, Nov 1991.
[6] Q. Yong, W. Xudong, and W. Zhong Lin, "Microfibre–nanowire hybrid structure for energy scavenging," Nature, vol. 451, pp. 809-813, 2008.
[7] C. R. Martin, "Nanomaterials - a membrane-based synthetic approach," Science, vol. 266, pp. 1961-1966, Dec 1994.
[8] R. V. K. Mangalam, N. Ray, U. V. Waghmare, A. Sundaresan, and C. N. R. Rao, "Multiferroic properties of nanocrystalline BaTiO3," Solid State Commun., vol. 149, pp. 1-5, Jan 2009.
[9] P. Yang, Y. Wu, and R. Fan, "Inorganic semiconductor nanowires," International Journal of Nanoscience, vol. 1, pp. 1-39, 2002.
[10] C. G. Wu and T. Bein, "Conducting carbon wires in ordered, nanometer-sized channels," Science, vol. 266, pp. 1013-1015, Nov 1994.
[11] B. Gates, Y. Y. Wu, Y. D. Yin, P. D. Yang, and Y. N. Xia, "Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se," J. Am. Chem. Soc., vol. 123, pp. 11500-11501, Nov 2001.
[12] T. J. Trentler, S. C. Goel, K. M. Hickman, A. M. Viano, M. Y. Chiang, A. M. Beatty, P. C. Gibbons, and W. E. Buhro, "Solution−Liquid−Solid Growth of Indium Phosphide Fibers from Organometallic Precursors: Elucidation of Molecular and Nonmolecular Components of the Pathway," J. Am. Chem. Soc., vol. 119, pp. 2172-2181, 1997/03/01 1997.
[13] P. D. Markowitz, M. P. Zach, P. C. Gibbons, R. M. Penner, and W. E. Buhro, "Phase Separation in AlxGa1-xAs Nanowhiskers Grown by the Solution−Liquid−Solid Mechanism," J. Am. Chem. Soc., vol. 123, pp. 4502-4511, 2001/05/01 2001.
[14] O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff, and W. E. Buhro, "CVD Growth of Boron Nitride Nanotubes," Chem. Mat., vol. 12, pp. 1808-1810, 2000/07/01 2000.
[15] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, "Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth," Science, vol. 270, pp. 1791-1794, December 15, 1995 1995.
[16] Y. Mao, T. J. Park, F. Zhang, H. Zhou, and S. S. Wong, "Environmentally friendly methodologies of nanostructure synthesis," Small, vol. 3, pp. 1122-1139, Jul 2007.
[17] U. A. Joshi and J. S. Lee, "Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires," Small, vol. 1, pp. 1172-1176, Dec 2005.
[18] B. A. Hernandez, K. S. Chang, E. R. Fisher, and P. K. Dorhout, "Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes," Chem. Mat., vol. 14, pp. 480-482, Feb 2002.
[19] K. H. Yoon, Y. S. Cho, and D. H. Kang, "Molten salt synthesis of lead-based relaxors," J. Mater. Sci., vol. 33, pp. 2977-2984, Jun 1998.
[20] C. Sikalidis, Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications: InTech, pp. 80, 2011.
[21] W. Z. Wang, Y. J. Zhan, X. S. Wang, Y. K. Liu, C. L. Zheng, and G. H. Wang, "Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant," Mater. Res. Bull., vol. 37, pp. 1093-1100, May 2002.
[22] Y. Wang and J. Y. Lee, "Molten salt synthesis of tin oxide nanorods: Morphological and electrochemical features," J. Phys. Chem. B, vol. 108, pp. 17832-17837, Nov 2004.
[23] W. Z. Wang, C. K. Xu, G. H. Wang, Y. K. Liu, and C. L. Zheng, "Preparation of smooth single-crystal Mn3O4 nanowires," Adv. Mater., vol. 14, pp. 837-840, Jun 2002.
[24] Y. K. Liu, C. L. Zheng, W. Z. Wang, C. R. Yin, and G. H. Wang, "Synthesis and characterization of rutile SnO2 nanorods," Adv. Mater., vol. 13, pp. 1883-1887, Dec 2001.
[25] C. Y. Xu, Q. Zhang, H. Zhang, L. Zhen, J. Tang, and L. C. Qin, "Synthesis and characterization of single-crystalline alkali titanate nanowires," J. Am. Chem. Soc., vol. 127, pp. 11584-11585, Aug 2005.
[26] T. Zaremba, "Investigation on synthesis and microstructure of potassium tetratitanate," J. Therm. Anal. Calorim., vol. 91, pp. 911-913, Mar 2008.
[27] S. Yin, S. Uchida, Y. Fujishiro, M. Aki, and T. Sato, "Phase transformation of protonic layered tetratitanate under solvothermal conditions," J. Mater. Chem., vol. 9, pp. 1191-1195, May 1999.
[28] H. Izawa, S. Kikkawa, and M. Koizumi, "Ion-exchange and dehydration of layered titanates, Na2Ti3O7 and K2Ti4O9," J. Phys. Chem., vol. 86, pp. 5023-5026, 1982.
[29] N. Z. Bao, X. Feng, X. H. Lu, and Z. H. Yang, "Study on the formation and growth of potassium titanate whiskers," J. Mater. Sci., vol. 37, pp. 3035-3043, Jul 2002.
[30] S. O. Kang, B. H. Park, and Y. I. Kim, "Growth mechanism of shape-controlled barium titanate nanostructures through soft chemical reaction," Cryst. Growth Des., vol. 8, pp. 3180-3186, Sep 2008.
[31] T. W. Kim, Y. S. Yoon, S. S. Yom, and C. O. Kim, "Ferroelectric BaTiO3 films with a high-magnitude dielectric constant grown on p-Si by low-pressure metalorganic chemical vapor deposition," Applied Surface Science, vol. 90, pp. 75-80, 1995.
[32] S. Lee, C. A. Randall, and Z. K. Liu, "Modified phase diagram for the barium oxide-titanium dioxide system for the ferroelectric barium titanate," J. Am. Ceram. Soc., vol. 90, pp. 2589-2594, Aug 2007.
[33] 劉國雄、鄭晃忠、李勝隆、林樹均、葉均蔚, 工程材料科學: 全華科技圖書股份有限公司, pp. 421, 2006.
[34] Y. H. Zhang, J. W. Hong, B. Liu, and D. N. Fang, "Strain effect on ferroelectric behaviors of BaTiO3 nanowires: a molecular dynamics study," Nanotechnology, vol. 21, Jan 2010.
[35] J. K. W. L. L. Hench, "Principles of electronic ceramics," John Wiley & Sons, New York, 1990.
[36] Y. H. Xu., Ferroelectric Materials and Their Application. New York: North-Holland, 1991.
[37] G. K. Sahoo, "Synthesis and characterization of BaTiO3 Prepared by Molten Salt Synthesis Method," 印度國立理工學院魯爾克拉分校陶瓷工程學系碩士論文.
[38] 蘇俊豪, "以鈦酸鉀奈米線為前驅物合成鈦酸鋇奈米結構之研究," 國立清華大學材料科學及工程學系碩士論文, 2011.
[39] 林振華, 電子材料: 全華科技圖書股份有限公司, 2001.
[40] A. J. M. a. J. M. Herbert, Electroceramics: Materials, Properties, Applications Wiley; 2 edition, 2003.
[41] 陳瀅如, "添加微細粉對鈦酸鉛鍍膜製程與特性之研究," 清華大學碩士論文, 1998.
[42] B. Im, U. A. Joshi, K. H. Lee, and J. S. Lee, "Growth of single crystalline barium titanate nanowires from TiO 2 seeds deposited on conducting glass," Nanotechnology, vol. 21, p. 425601, 2010.
[43] M. Wang, G. L. Tan, and Q. J. Zhang, "Multiferroic properties of nanocrystalline PbTiO3 ceramics," J. Am. Ceram. Soc., vol. 93, pp. 2151-2154, Aug 2010.
[44] A. Sundaresan and C. N. R. Rao, "Ferromagnetism as a universal feature of inorganic nanoparticles," Nano Today, vol. 4, pp. 96-106, 2009.
[45] A. G. Schrott, J. A. Misewich, V. Nagarajan, and R. Ramesh, "Ferroelectric field-effect transistor with a SrRuxTi1-xO3 channel," Appl. Phys. Lett., vol. 82, pp. 4770-4772, Jun 2003.
[46] J. Yuk and T. Troczynski, "Sol–gel BaTiO3 thin film for humidity sensors," Sensors and Actuators B: Chemical, vol. 94, pp. 290-293, 2003.
[47] Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, and J. Zhao, "Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning," Sensors and Actuators B: Chemical, vol. 146, pp. 98-102, 2010.
[48] R. Bogue, "Energy harvesting and wireless sensors: a review of
recent developments," Sensor Review, vol. 29, p. 194, 2009.
[49] L. Neel, Ed., Low Temperature Physics. Lectures Delivered at Les Houches During the 1961 Session of the Summer School of Theoretical Physics, University of Grenoble: Gordon and Beach,New York, 1962, p.^pp. Pages.
[50] M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, "Unexpected magnetism in a dielectric oxide," Nature, vol. 430, pp. 630-630, Aug 2004.
[51] N. H. Hong, J. Sakai, N. Poirot, and V. Brizé, "Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films," Phys. Rev. B, vol. 73, p. 132404, 2006.
[52] N. H. Hong, J. Sakai, and V. Brizé, "Observation of ferromagnetism at room temperature in ZnO thin films," Journal of Physics: Condensed Matter, vol. 19, p. 036219, 2007.
[53] H. K. W. Heywang, "Depolarization effects in polycrystalline BaTiO3," Z. Angew. Phys., 6, pp. 385-390, 1954.
[54] G. Arlt, D. Hennings, and G. Dewith, "Dielectric-properties of fine-grained barium-titanate ceramics," J. Appl. Phys., vol. 58, pp. 1619-1625, 1985.
[55] K. Uchino, E. Sadanaga, and T. Hirose, "Dependence of the crystal-structure on particle-size in barium-titanate," J. Am. Ceram. Soc., vol. 72, pp. 1555-1558, Aug 1989.
[56] M. K. Lei, Y. X. Ou, K. S. Wang, and L. Chen, "Wear and corrosion properties of plasma-based low-energy nitrogen ion implanted titanium," Surface and Coatings Technology, vol. 205, pp. 4602-4607, 2011.
[57] H. Song, H. Jiang, T. Liu, X. Liu, and G. Meng, "Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n+1 (A=Li, Na and K)," Mater. Res. Bull., vol. 42, pp. 334-344, 2007.
[58] C. Xu, Y. D. Xia, Z. G. Liu, and X. K. Meng, "Chemical states change at (Ba,Sr)TiO3/Pt interfaces investigated by x-ray photoelectron spectroscopy," J. Phys. D-Appl. Phys., vol. 42, Apr 2009.
[59] W. Cui, S. Ma, L. Liu, J. Hu, and Y. Liang, "CdS-sensitized K2Ti4O9 composite for photocatalytic hydrogen evolution under visible light irradiation," Journal of Molecular Catalysis A: Chemical, vol. 359, pp. 35-41, 2012.
[60] U. A. Joshi, S. Yoon, S. Baik, and J. S. Lee, "Surfactant-Free Hydrothermal Synthesis of Highly Tetragonal Barium Titanate Nanowires: A Structural Investigation," The Journal of Physical Chemistry B, vol. 110, pp. 12249-12256, 2006/06/01 2006.
[61] M. Wegmann, L. Watson, and A. Hendry, "XPS analysis of submicrometer barium titanate powder," J. Am. Ceram. Soc., vol. 87, pp. 371-377, Mar 2004.
[62] S. Kumar, V. S. Raju, and T. R. N. Kutty, "Preparation of BaTi4O9 and Ba2Ti9O20 ceramics by the wet chemical gel-carbonate method and their dielectric properties," Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 142, pp. 78-85, Sep 2007.
[63] S. Tsunekawa, K. Ishikawa, Z. Q. Li, Y. Kawazoe, and A. Kasuya, "Origin of anomalous lattice expansion in oxide nanoparticles," Phys. Rev. Lett., vol. 85, pp. 3440-3443, Oct 2000.
[64] D. Cao, M. Q. Cai, Y. Zheng, and W. Y. Hu, "First-principles study for vacancy-induced magnetism in nonmagnetic ferroelectric BaTiO3," Phys. Chem. Chem. Phys., vol. 11, pp. 10934-10938, 2009.
[65] S. Mochizuki, F. Fujishiro, and S. Minami, "Photoluminescence and reversible photo-induced spectral change of SrTiO3," J. Phys.-Condes. Matter, vol. 17, pp. 923-948, Feb 2005.
[66] S. B. Qin, D. Liu, Z. Y. Zuo, Y. H. Sang, X. L. Zhang, F. F. Zheng, H. Liu, and X. G. Xu, "UV-irradiation-enhanced ferromagnetism in BaTiO3," J. Phys. Chem. Lett., vol. 1, pp. 238-241, Jan 2010.
[67] D. I. Woodward, I. M. Reaney, G. Y. Yang, E. C. Dickey, and C. A. Randall, "Vacancy ordering in reduced barium titanate," Appl. Phys. Lett., vol. 84, pp. 4650-4652, Jun 2004.
[68] D. C. Cronemeyer, "Electrical and Optical Properties of Rutile Single Crystals," Physical Review, vol. 87, pp. 876-886, 1952.
[69] 魏均穎, "Effect of La2O3 and Cooling Rate on the PTCR and Conduction Bahavior of BaTiO3," 國立成功大學材料科學及工程學系碩士論文, 2005.