簡易檢索 / 詳目顯示

研究生: 謝政宇
Hsieh, Cheng-Yu
論文名稱: Development of Integrated Microcoils for Magnetic Resonance Microsystem
微型核磁共振系統積體微線圈之研製
指導教授: 范龍生
Fan, Long-Sheng
口試委員: 曾文毅
方維倫
王福年
范龍生
徐碩鴻
蔡睿哲
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 87
中文關鍵詞: 微線圈高深寬比製程核磁共振影像
外文關鍵詞: Microcoil, High-aspect-ratio process, Magnetic resonance image
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The purpose of this study is to develop key components that can be used in a
    magnetic resonance microsystem. Conventional magnetic resonance systems comprise
    several components including a superconducting magnet, RF amplifier, spectrometer, and
    probe head. This study proposes a magnetic resonance microsystem that uses NdFeB
    permanent magnet material to replace the superconducting magnet, and an on-chip RF
    amplifier and microfabricated coils as the probe head.
    This study focuses on the design and fabrication of the key components of RF
    microcoils and gradient microcoils. A multilayer high-aspect-ratio metal fabrication
    process is developed to fabricate a nanoliter-volume radio frequency (RF) saddle coil
    with an embedded flow-through fluidic channel for magnetic resonance applications. The
    measured resistance of the RF microcoil and the 1H spectrum line width are 0.7 Ω and
    350 Hz, respectively. The results indicate that this novel fabrication process for
    microcoils is feasible for magnetic resonance applications. These key components can be
    used to realize magnetic resonance microsystems in the future.


    本論文之主要研究目的為開發可應用於微型化之核磁共振系統之關鍵零組件。傳統核磁共振系統包含了超導磁鐵、射頻放大訊號放大器、商用光譜儀、射頻探頭等元件。本研究所提出之微型化系統使用等級N42之銣鐵硼(NdFeB)材料組裝成永久磁鐵代替超導磁鐵,以及晶片化射頻放大器,和使用微製程所製造之射頻線圈及梯度線圈探頭。 本論文主要著重於射頻線圈和梯度線圈等關鍵元件之微型化設計與製造。微型化之射頻和梯度線圈使用多層高深寬比之金屬微製程技術所製造,在此微線圈中並製作一微流體通道使液體樣品流過。此微型射頻線圈之電阻值為0.7歐姆而在核磁共振實驗中量測得到的氫原子譜線寬度為350 Hz。本論文之研究結果顯示出利用上述之關鍵元件以實現微型化核磁共振系統之可行性。

    List of Tables………………………………………………………………………..3 List of figures……………………………………………………………………….4 Chapter 1 Introduction……………………………………………………………...8 1.1 Historical Background……………………………………………………….....8 1.2 Purpose of Study………………………………………………………………..9 Chapter 2 NMR and MRI principles……………………………………………....11 2.1 The Principle of Nuclear Magnetic Resonance……………………………….11 2.2 Magnetic Resonance Image Principle and Gradient Coil……………………..18 Chapter 3 Microcoil……………………………………………………………….20 3.1 RF Coil design for miniaturization……………………………………………20 3.2 Gradient Coil…………………………………………………………………..25 3.3 Summary………………………………………………………………………29 Chapter 4 Finite Element Simulation of Microcoil……………………………….30 4.1 Magnetic Field Simulation of RF Coil………………………………………..30 4.2 Magnetic Field Simulation of Gradient Coil………………………………….33 Chapter 5 Fabrication Process of Microcoil………………………………………37 5.1 Solenoid Type Microcoil……………………………………………………...38 5.2 Polyimide Based Microcoi……………………………………………………41 5.3 Electrochemical Fabrication Process Microcoil……………………………...43 5.4 High Aspect Ratio Metal Coil Process………………………………………..48 5.5 Gradient Coil Process…………………………………………………………51 Chapter 6 Package Process of Microcoil………………………………………….53 6.1 Flow-Through Channel Fabrication Process………………………………….53 6.2 Selection of Package Material………………………………………………...57 2 Chapter 7 Microcoil Tests and Results……………………………………………59 7.1 RF Coil Measurements………………………………………………………..59 7.2 Gradient Coil Measurements………………………………………………….65 7.3 Discussion……………………………………………………………………..69 Chapter 8 Conclusions…………………………………………………………….73 Chapter 9 Future Work…………………………………………………………….74 References………………………………………………………………………....77 Appendix…………………………………………………………………………..80 A. RF IC Transceiver……………………………………………………………....80 B. Magnet…………………………………………………………………………..83 Author Curriculum Vitae…………………………………………………………..86

    1. Olson D L, Peck T L, Webb A G, Magin R L, Sweedler J V (1995)
    High-Resolution Microcoil H-NMR for Mass-Limited, Nanoliter-Volume Samples.
    Science. 270(5244):1967-1970.
    2. Lacey M E, Subramanian R, Olson D L, Webb A G, Sweedler J V (1999)
    High-resolution NMR spectroscopy of sample volumes from 1 nL to 10 □L. Chem.
    Rev. 99 (10):3133-3152
    3. Peck T L, Magin R L, Lauterbur P C (1995) Design and analysis of microcoils for
    NMR microscopy. Journal of magnetic resonance. Series B 108: 114-124.
    4. Badilita V, Kratt K, Burger T, Korvink J G, Wallrabe U 3D high aspect ratio,
    MEMS integrated micro-solenoids and Helmholtz micro-coils. In: The 15th
    International Conference on Solid-State Sensors, Actuators and Microsystems
    (Transducers’09) Denver (U.S.A.), June 21–25, 2009, pp. 1106-1109
    5. Demas V, Herberg J L, Malba V, Bernhardt A, Evans L, Harvey C, Chinn S C,
    Maxwell R S, Reimer J (2007) Portable, low-cost NMR with laser-lathe
    lithography produced microcoils. J. Magn. Reson. 189:121-129
    6. Goto S, Matsunaga T, Matsuoka Y, Kuroda K, Esashi M, Haga Y, Development of
    high-resolution intraluminal and intravascular MRI probe using microfabrication
    on cylindrical substrates, In: IEEE MEMS 2007, Kobe (Japan), Janurary 21-25,
    2007, pp. 329-332
    7. Jackman R J, Brittain S T, Whitesides G M (1998) Fabrication of
    three-dimensional microstructures by electrochemically welding structures formed
    by microcontact printing on planar and curved substrates. Journal of
    Microelectromechanical Systems 7:261-266
    8. Jiang Y G, Ono T, Esashi M (2006) High aspect ratio spiral microcoils fabricated
    by a silicon lost molding technique. J. Micromech. Microeng.16:1057-1061
    9. Malba V, Maxwell R, Evans L B, Bernhardt A F, Cosman M, Yan K (2003)
    Laser-lathe lithography - a Novel method for manufacturing nuclear magnetic
    resonance microcoils. Biomedical Microdevices 5(1):21-27
    10. Woytasik M, Ginefri J C, Raynaud J S, Poirier-Quinot M, Dufour-Gergam E,
    Grandchamp J, Girard O, Robert P, Gilles J P, Martincic E, Darrasse L (2007)
    Characterization of flexible RF microcoils dedicated to local MRI. Microsyst.
    Technol 13:1575-1580
    11. Ehrmann K, Saillen N, Vincent F, Stettler M, Jordan M, Wurm F M, Besse P-A,
    Popovic R (2007) Microfabricated solenoids and Helmholtz coils for NMR
    spectroscopy of mammalian cells. Lap Chip 7:373-380
    12. Massin C, Vincent F, Homsy A, Ehrmann K, Boero G, Besse P-A, Daridon A,
    78
    Verpoorte E, de Rooij N F, Popovic R S (2003) Planar microcoil-based
    microfluidic NMR probes. J. Magn. Reson. 164:242-255
    13. Lam M H C, Homenuke M A, Michael C A, Hansen C L (2009) Sub-nanoliter
    nuclear magnetic resonance coils fabricated with multilayer soft lithography.
    Journal of Micromechanics and Microengineering
    doi:10.1088/0960-1317/19/9/095001
    14. Li Y, Ahmad M M, Hand J W, Syms R R A, Gilderdale D, Collins D J, Young I R
    (2007) Microcoils on structured silicon substrates for magnetic resonance
    detection. IEEE Sensors Journal 7(9):1362-1369
    15. Jin J M (1999) Electromagnetic Analysis and Design in Magnetic Resonance
    Imaging. CRC Press.
    16. Bloch F (1946) Nuclear induction. Physical Review. 70:460-474.
    17. Hoult D I, Richards R E (1976) The Signal to Noise Ratio of the Nuclear
    Magnetic Resonance Experiment. Journal of magnetic resonance. 24:71-85.
    18. Fan L S, Hsu S S H, Jin J E, Hsieh C Y, Lin W C, Hao H C, Cheng H L, Hsueh K
    C, Lee C Z: Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of
    Technical Papers. IEEE International, 2007, p. 166.
    19. Fateh B (2006) “Modeling, Simulation and Optimization of a Microcoil for
    MRI-Cell Imaging”, Master thesis, IMTEK, Freiburg university-Germany
    20. Minard K.R., Wind R.A. (2001) Solenoidal Microcoil Design. Part Ι :
    Optimizing RF Homogeneity and Coil Dimensions. Concepts in Magnetic
    Resonance. 13(2): 128-142.
    21. Morris D, Gorkov P G, Harris A B, Tsao J, Moser K, Georgiadis J, Webb A
    Lauterbur,P C (1999) Microsamples, micro-coils, micro-magnets: where will all
    this smallness end? L16, In Book of Abstracts for 5th International Conf. on
    Magnetic Resonance Spectroscopy (Heidelberg).
    22. Glover P, Mansfield S.P. (2002) Limits to magnetic resonance microscopy. Rep.
    Prog. Phys. 65:1489-1511.
    23. Tuner R, (1993) Gradient Coil Design: A Review of Methods. Magnetic
    Resonance Imaging, Vol. 11, pp. 903-920.
    24. Valtier M, Humbert F, Canet D, (1999) Maps of self-diffusion coefficients by
    radiofrequency field gradient NMR microscopy J. Magn. Reson. 141:7–17
    25. Ginsberg D M, Melchner M J (1970) Optimum geometry of saddle shaped coils
    for generating a uniform magnetic field. Rev. Sci. Instrum. 41:122-123
    26. Lee W., Gao Y., Hirano T., Chan T., S., Fan L.S., (1997) High aspect ratio etching
    in polymer for microactuator application, in Proc. Micromachining and
    Microfabrication Process Technol., SPIE, pp. 110–117.
    27. Yoon J.B., Han C.H., Yoon E., Kim C.K.,(1999) Monolithic integration of 3-D
    79
    electroplated microstructures with unlimited number of levels using planarization
    with a sacrificial metallic mold (PSMM), in Proc IEEE MEMS, Orlando (USA),
    pp.624-629
    28. Cohen A L, Frodis U, Tseng F G, Zhang G, Mansfeld F, Will P M (1999) EFAB:
    low-cost automated electrochemical batch fabrication of arbitrary 3D
    microstructures. Proc. SPIE Micromachining and Microfabrication Process
    Technology. 3874:236-247.
    29. Kim Y, Llamas-Garro I, Baek C W, Kim J M, Kim Y K (2009) New release
    technique of a thick sacrificial layer and residue effects on novel half-coaxial
    transmission line filters. J. Micromech. Microeng. 19:1-6
    30. Bu M, Melvin T, Ensell G J, Wilkinson J S, Evans A G R (2004) A new masking
    technology for deep glass etching and its microfluidic application. Sensors and
    Actuators A: Physical 115:476-482
    31. Iliescu C, Jing J, Tay F E H, Miao J, Sun T (2005) Characterization of masking
    layers for deep wet etching of glass in an improved HF/HCl solution. Surface and
    Coatings Technology 198:314-318
    32. Song J S, Lee S, Jung S H, Cha G C, Mun M S (2009) Improved biocompatibility
    of parylene-C files prepared by chemical vapor deposition and the subsequent
    plasma treatment. Journal of Applied Polymer Science 112:3677-3685
    33. Moresi G, Magin R L(2003) Miniature Permanent Magnet for Table-top NMR
    Concepts in Magnetic Resonance Part B, 19B(1):35-43.
    34. 林偉成, ”A 4 Tesla Compact Magnet for Nano-MRI”, 碩士論文, 國立清華大學
    微機電系統工程研究所, 台灣, 2006.
    35. Seeber D A, Hoftiezer J H, Daniel W B, Rutgers M A, Pennington C H (2000)
    Triaxial magnetic field gradient system for microcoil magnetic resonance imaging.
    Rev. Sci. Instrum. 71:4263-4272
    36. Carlson, J W,Derby, K A, Hawryszko, K C, Weideman, M D (1992) Evaluation of
    shielded gradient coils. Magn. Reson. Med. 26:191-206.
    37. Turner, R (1988) Minimum inductance coils. J. Phys. E: Sci. Instrum. 21:948-952.
    38. Olson D L, Lacey M E, Sweedler J V (1998) High-resolution microcoil NMR for
    analysis of mass-limited, nanoliter samples. Anal. Chem. 70:645-650
    39. Purea A., Neuberger T., Webb A.G., (2004) Simultaneous NMR microimagimg of
    multiple single-cell samples. Concept Magn. Reson Eng. 22B:7–14.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE