研究生: |
袁雅平 Yuan, Ya-ping |
---|---|
論文名稱: |
量子表面碼在去極化通道下的解碼演算法 A Decoding Algorithm for Quantum Surface Codes over Depolarizing Channels |
指導教授: |
呂忠津
Lu, Chung-Chin |
口試委員: |
林茂昭
Lin, Mao-Chao 蘇育德 Su, Yu-Te 蘇賜麟 Su, Szu-Lin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 量子錯誤更正碼 、量子穩定元素碼 、量子表面碼 、量子計算 、量子資訊 、量子電腦 |
外文關鍵詞: | Quantum error-correction codes, Quantum stabilizer codes, Quantum surface codes, Quantum computation, Quantum information, Quantum computers |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量子計算的發展大幅受限於硬體技術,因此量子錯誤更正碼對於量子計算的
普及與實現是非常重要的因素之一。因著與古典錯誤更正碼有強烈的連結關
係,量子穩定碼是最為重要的量子錯誤更正碼之一。而量子表面碼是一種量子
拓樸穩定碼,其穩定元與資料位元有著特殊的幾何結構,使其能被更為容易的
分析與解碼。也因這樣的特性,使得許多人認為量子表面碼具有很大的潛力能
協助推進大規模的量子計算。通常為了簡化問題,在對量子表面碼做解碼時,
位元反轉錯誤與相位反轉錯誤常會被假設為彼此獨立。然而在真實系統中,此
二種錯誤形式是會具有相關性。本篇論文即是探討量子表面碼在去極化通道
下,位元反轉錯誤與相位反轉錯誤具有相關性時的解碼問題。
The development of quantum computing is highly restricted by the limit of hardware implementation. Therefore, the development of quantum error-correcting codes is a very important issue to quantum computing. The class of stabilizer codes is one of the most important quantum error-correcting codes since it has a strong relation with classical error-correcting codes. Surface codes are a kind of quantum topological stabilizer codes whose stabilizers and qubits have a geometrical structure that makes them easier to be analyzed and decoded. People believe that surface codes have a very large potential to lead us to large-scale quantum computation. In the decoding of surface codes, the bit-flip errors and phase-flip errors are often assumed to be independent for simplicity. However, these two kinds of errors are likely to be correlated in the real world. In this thesis, we will discuss the decoding of surface codes over the depolarizing channels where bit-flip errors and phase-flip errors are correlated.
[1] A. Y. Kitaev, ”Fault-tolerant quantum computation by anyons,” Annals of Physics, vol. 303, no. 1, pp. 2–30, 2003.
[2] S. B. Bravyi and A. Y. Kitaev, ”Quantum codes on a lattice with boundary,” arXiv preprint quant-ph/9811052, 1998.
[3] M. H. Freedman and D. A. Meyer, ”Projective plane and planar quantum codes,” Foundations of Computational Mathematics, vol. 1, no. 3, pp. 325–332, 2001.
[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 1st ed. Cambridge, U.K.: Cambridge Univ. Press, 2000.
[5] K. Y. Kuo, ”On the encoding and decoding complexities of quantum stabilizer codes,” Ph.D. dissertation, National Tsing Hua University, 2015.
[6] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, ”Surface codes: Towards practical large-scale quantum computation,” Physical Review A, vol. 86, no. 3, p. 032324, 2012.
[7] H. Bomb´ın, ”Topological codes,” in Quantum Error Correction, D. A. Lidar and T. A. Brun, Eds., 1st ed. Cambridge: Cambridge University Press, 2013.
[8] J. Edmonds, ”Paths, trees, and flowers,” Canadian Journal of mathematics, vol. 17, pp. 449–467, 1965.
[9] A. G. Fowler, ”Optimal complexity correction of correlated errors in the surface code,” arXiv preprint arXiv:1310.0863, 2013.
[10] D. E. Browne, ”Lectures on topological codes and quantum computation,” Lecture Note, Department of Theoretical Physics, University of Innsbruck, Innsbruck, 2014.
[11] K. Fujii, Quantum Computation with Topological Codes: From Qubit to Topological Fault-Tolerance, 1st ed. Singapore: Springer, 2015.