簡易檢索 / 詳目顯示

研究生: 洪卿雲
Hung, Ching-Yun
論文名稱: 以脈衝-休止法製備錳氧化物奈米線應用於超級電容器
Manganese Oxide Nanowire Prepared by Pulse-Rest Method for Supercapacitors
指導教授: 胡啟章
Hu, Chi-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 135
中文關鍵詞: 超電容錳氧化物陽離子
外文關鍵詞: supercapacitor, manganese oxide, cation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 錳金屬的奈米線氧化物可以成功地利用脈衝-休止法來製備在石墨電極上,可藉由控制實驗的脈衝時間、休止時間改變氧化物的特性。製備出的所有氧化物經由循環伏安法在鹼金、鹼土族水溶液中進行電化學測試,都具有良好的電容器行為,其電容量介於41-157 F/g。根據本研究,在1.1V脈衝電壓、0.5 s休止時間、0.5 s脈衝時間、工作於0.5 M的氯化鈣溶液中可以得到最大的電容量。
    表面的結構由掃描式電子顯微鏡(FE-SEM, field emission scanning electron microscope)觀察;細微的結構、特徵長度以及晶相則由高解析穿透式電子顯微(HR-TEM, high resolution transmission electron microscope)鏡觀察;氧化數分析則是藉由X光光電子光譜儀(XPS, X-ray photoelectron spectroscope)和拉曼光譜儀(Raman spectrum)來獲得;微震盪電子石英天秤(EQCM, electrochemistry quartz crystal microbalance)則是用來觀察不同陽離子電解液間的差異。
    另一方面,脈衝的參數同時影響著帶單電荷離子和帶雙電荷離子電解液對電化學行為的影響,由實驗結果,推斷可能和ton/toff 的比例有關。其充放電的電化學反應可被歸納為:
    MnO2 + δM+ + δe− □ MnO2−δ (OM)δ
    最後,分別以脈衝休止法所製備出的錳氧化物、純Mn3O4結晶以及多層奈米碳管做為基材,再以定電流的方式成長錳氧化物於以上基材上,這些錳氧化物的混合物都表現出良好的電化學行為。此外,這些氧化物的穩定性相當的好:在10000圈的掃描中,僅僅只有5~15 %的電容損失,而實驗中得到最大的比電容值為390.8 F/g。


    Manganese oxide nanowire mixture is successfully prepared by two electrode pulse-rest method with different pulse time and rest time. All of conditions show good capacitor behavior by cyclic voltammetry in both monovalent and bivalent mild solution, and the specific capacitance is between 41~157 F/g. The largest data from this study is obtained in 1.1V pulse voltage, 0.5s pulse time, 0.5s rest time, and working in 0.5M calcium chloride solution.
    The surface morphology was obtained by field emission scanning electron microscope (FE-SEM), which aspect ratio was affected by the pulse parameter, and the detail morphology and crystalline species are confirmed by high resolution transmission electron microscope (HR-TEM). Finally, the oxidation state is obtained by X-ray photoelectron spectroscope (XPS) and Raman spectrum. The cation effect is observed by electrochemistry quartz crystal microbalance (EQCM).
    On the other hand, the pulse parameters also affected the different capacitor behavior in monovalent and bivalent electrolyte. In our study, we assume that the ton/toff ratio, could affect the capacitor behavior in monovalent and bivalent electrolyte. The charge/discharge reaction can be summarized as:
    MnO2+δM+ + δe− □ MnO2−δ (OM)δ
    Finally, we deposited manganese oxide by galvanostatics by using the pulse oxide, pure Mn3O4 crystalline, and MWCNT (multiwall carbon nanotube) as the substrate. The manganese oxide mixture also shows good capacitance, power density, and reversibility. Moreover, the mixture shows excellent stability in 0.5M Na2SO4 electrolyte: only 5~15% decay during 10000 cycling, and the maximum specific capacitance value is 390.8F/g.

    Abstract...................................................I 中文摘要................................................III 目錄......................................................V 圖目錄...................................................IX 表目錄..................................................XIV 目錄 第一章 緒論與文獻回顧.....................................1 1-1 電化學反應系統.....................................1 1-2 電化學電容器.......................................6 1-3 電容測試原理.......................................9 1-4 準電容器的材料....................................14 1-4.1 釕氧化物的氧化還原對.........................14 1-4.2 錳氧化物的氧化還原對.........................16 1-5 電化學製備方法....................................18 1-6 氧化物之奈米結構..................................22 1-7 電解液對電容行為的影響............................23 1-7.1 充放電機制與電容關係.........................23 1-7.2 質荷比MCR (mass-to-charge ratio)..............24 1-8 氧化物利用率以及導電性的提升......................25 1-9 論文大綱與研究動機................................26 第二章 藥品儀器與實驗步驟................................28 2-1 藥品與儀器........................................28 2-2 石墨基材的製備與前處理............................31 2-3 以脈衝-休止法製備電極.............................32 2-4 以低溫水熱法製備四氧化三錳單晶…………………………33 2-5 電化學分析實驗....................................34 2-5.1 循環伏安實驗..................................36 2-5.2 可逆性實驗....................................36 2-5.3 充放電實驗....................................36 2-5.4 穩定性實驗....................................36 2-5.5電化學石英微震盪天平(EQCM)實驗...............37 2-6 材料分析實驗......................................37 第三章 以脈衝-休止法製備錳氧化物之電化學性質.............38 3-1 錳氧化物電極的製備................................38 3-1.1 影響製備氧化物電極的參數......................38 3-1.2 實驗參數......................................39 3-2 實驗結果與討論....................................41 3-2.1 FE-SEM下錳氧化物的奈米結構..................41 3-2.2 高解析度穿透式電子顯微鏡(HR-TEM)分析………..45 3-2.3 拉曼散射光譜(Raman Scattering Spectra)分析…..........49 3-2.4 X光光電子能譜儀(XPS)分析..........................................53 3-2.5 電化學行為...................................55 3-2.6 Mn3O4結晶的貢獻-1000圈掃瞄……………..…………61 3-3 結論..............................................64 第四章 電解液對於脈衝-休止法製備的氧化物影響.............65 4-1 實驗方法..........................................65 4-2 結果與討論........................................66 4-2.1不同ton/toff製備之氧化物在不同電解液中的電化學行為.66 4-2.2利用電化學微震盪石英天平進行質荷比研究..........73 4-2.3錳氧化物電極與電解液濃度的關係..................83 4-3 結論.............................................88第五章 以不同材料為基材的錳氧化物成長....................89 5-1 實驗方法..........................................89 5-1.1以錳氧化物奈米線為基材.........................89 5-1.2以四氧化三錳為基材.............................89 5-1.3以四氧化三錳和多璧奈米碳管混合物為基材...................89 5-2 結果與討論........................................90 5-2.1 以錳奈米線為基材...............................90 5-2.2 以四氧化三錳為基材.............................99 5-2.3 以四氧化三錳和多璧奈米碳管混合物為基材…………104 5-3 電容量、比電容、壽命的最適化.....................110 5-4 以錳奈米線氧化物為基材之電極的陽離子效應.........123 5-5 結論.............................................125 第六章 結論與未來展望...................................127 6-1 結論.............................................127 6-2 未來展望.........................................130 參考文獻................................................131

    1. A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, Singapore (1980).
    2. D. Pletcher, “A First Course in Electrode Processes”, The Electrochemical Consultancy, England (1991).
    3. D. R. Crow, “Principles and Applications of Electrochemistry”, 2nd Ed. Chapman and Hall Ltd. London (1979).
    4. 胡啟章編著,電化學原理與方法,五南P1.
    5. D. Pletcher and F. C. Walsh, Industrial Electrochemistry, Chapman and Hall Ltd. N. Y. (1990).
    6. 張光揮, “循環伏安置備含水釕銥氧化物於電化學電容器的應用”, 國立中正大學化工研究所碩士論文 (2000).
    7. A. M. Couper, D. Pletcher, and F. C. Walsh, Chem. Rev., 90, 837 (1990).
    8. D Galizzoli., F Tantardini., S Trasatti., J. Appl. Electrochem., 5, 203 (1975).
    9. 黃耀煌, “循環伏安法置備之含水釕氧化物於電化學電容器之應用”, 國立中正大學化工研究所碩士論文 (1999).
    10. K. Naoi and P. Simon, The Electrochem. Soc., Interface, Spring, p34 (2008).
    11. S.L Kuo and N.L Wu, Electrochem. and Solid-State Letters 6, A85(2003).
    12. Y.T Wu, and C.C. Hu, J. Electrochem. Soc. 151 A2060 (2004).
    13. V. Srinivasan, and J.W. Weidne, J. Electrochem. Soc. 144 L210(1997).
    14. H. Y. Lee and J. B. Goodenough, J. Solid State Chem. 148, 1(1999).
    15. N. L. Wu, S. Y. Wang, C. Y. Han, D. S. Wu, and L. R. Shiue, J. Power Sources
    16. I. D. Raistrick, in The Electrochemistry of Semiconductors and Electronics-Processess and Devices, p. 297, J. McHardy and F. Luduig, Editors, Noyes, Park Ridge, NJ (1992).
    17. B. E. Conway, International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Vol. 1 (1991); Vol. 2 (1992).
    18. C.C Hu, W.C Chen, and K.H Chang, J. Electrochem. Soc. 151, A281(2004).
    19. J. P. Zheng, P. J. Cygan, and T.R. Jow, J. Electrochem. Soc.142, 699(1995).
    20.陳奕勳, “陽極沉積錳系水合氧化物於電化學超級電容器之應用” , 國立中正大學化工研究所碩士論文 (2003).
    21. S.C Pang, M.A. Anderson, and T.W. Chapman, J. Electrochem. Soc. 147, 444(2000).
    22. Y.T Wu, and C.C. Hu, J. Electrochem. Soc. 151, A2060(2004).
    23. H. Wendt, “Electrocatalysis in Organic Electrochemistry”, Wlwctrochim. Acta, 29, 1513 (1991)
    24. B. Marsan, N. Fradette, and G. Beaudoin, J. Electrochem. Soc. 139, 1889(1992)
    25. L. Nammi, S. Polizzi, A.Benedetti, and A.D. Battisti, J. Electrochem. Soc., 146, 220 (1999)
    26. M Ito, Y Murakami, H. Kaji, K. Yahikozawal and Y. Takasu, J. Electrochem. Soc., 143, 32 (1996)
    27. T.C. Wen and C.C. Hu. ,J. Electrochem. Soc., 139, 2158 (1992)
    28. C.C Hu and C.C Wang, J Electrochem Soc 150 A1079 (2003).
    29. Y. Qin; X.D. Wang,; Z.L. Wang, Nature, 451, 809 (2008).
    30. Y. J. Hsu,; S.Y. Lu,; Y. F. Lin,; Adv. Func. Mater, 15, 1350 (2005).
    31. C.C. Hu,; K.H. Chang,; M.C. Lin,; Y.T. Wu, Nano Lett, 6, 2690 (2006).
    32. K. Zhu,; T.B. Vinzant,; N.R. Neale,; A.J Frank,. Nano Lett, 7, 3739 (2007).
    33. C.L. Cheng,; Y.F. Chen,; R.S. Chen,; Y.S. Huang, App. Phys. Lett, 86, 103104 (2008).
    34. C.H. Ye,; Y. Bando,; X.S. Fang,; G.Z. Shen,; D. Golberg, J. Phys. Chem. C, 111, 12673 (2007).
    35. R.H. Baughman,; A.A. Zakhidov,; de Heer, W.A. Science, 297, 787 (2002).
    36. W.A. Deheer,; A. Chatelain,; D. Ugarte,; Science, 270, 1179 (1995).
    37. C.L. Cheng,; Y.F. Chen,; R.S. Chen,; Y.S. Huang, App. Phys. Lett, 86, 103104 (2005).
    38. Binni Varghese; T.C. Hoong; Z. Yanwu; M.V. Reddy; B.V.R. Chowdari; A.T.S. Wee; T.B.C. Vincent; C.T. Lim; C.H. Sow, Adv. Func. Mater. 17, 1932 (2007).
    39. J.G. Liu; Z.J. Zhang; Y. Zhao; X. Su; S. Liu; E.G. Wang Small 1, 310(2005).
    40. Y. Liu; L. Liao; J. Li; C. Pan J Phys. Chem. C, 111, 5050(2007).
    41. J.H. He; T.H. Wu; C.L. Hsin; K.M. Li; L.J. Chen; Y.L. Chueh; L.J. Chou; Z. L. Wang Small, 2, 116(2006).
    42. . C.J. Lee; T.J. Lee; S.C. Lyu; Y. Zhanh; H. Ruh; H.J. Lee, Appl. Phys. Lett. 81, 3648(2002)
    43. Z.R. Dai; Z.W. Pan; Z.L. Wang, Adv. Func. Mater. 13, 9(2003).
    44. N. Nagarajan, H. Humadi, I. Zhitomirsky, Electrochem. Acta. 51,3039~3045(2006)
    45. T.Brousse, M. Toupin, Romain Dugas, Laurence, Laurence Athouel, Olivier Crosnier, Daniel Belanger, J. Electrochem. Soc. 153 A2171 (2006).
    46. Chengjun Xu, Baohua Li, Hongda Du, Feiyu Kang, Yuqun Zeng,
    Journal of the Electrochemical Society 156 A73-A78 (2009)
    47. Chengjun Xu, Baohua Li, Hongda Du, Feiyu Kang, Yuqun Zeng,
    Journal of Power Sources 184 691 (2008)
    48. S. Wen, J.W. Lee, I.H. Yeo, J. Park, S.I. Mho, Electrochim. Acta 50 8495(2004).
    49. J.A. Dean, Lange’s Handbook of Chemistry, McGRAWHILL, 1992.
    50. Y. S. Chen, C.C Hu, Y.T Wu, Solid State Electrochem 467 (2004).
    51. C.C Hu, Y.T Wu, K.H Chang, Chem. Mater, 20, 2890–2894(2008)
    52.伍秀菁, 汪若文, 林美吟“儀器總覽”, 國家科學委員會精密儀器發 
     展中心
    53. S. Komaba, T. Ozeki, K. Okushi, Journal of Power Sources, 180 197-203 (2009)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE