研究生: |
廖凱偉 Liao, Kai Wei |
---|---|
論文名稱: |
氮化鎵/氧化鋅固溶體奈米觸媒的製備與其應用於光催化產氫之研究 Gallium Nitride/Zinc Oxide Solid Solution Nanocatalysts: Synthesis and Applications for Photocatalytic Hydrogen Production |
指導教授: |
楊家銘
Yang, Chia Min |
口試委員: |
黃暄益
Huang, Hsuan Yi 張淑閔 Chang, Sue Min 楊家銘 Yang, Chia Min |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 光催化 、水分解 、產氫 、產氧 、奈米顆粒 、氮化鎵 、氧化鋅 、固溶體 |
外文關鍵詞: | Photocatalysis, Water splitting, Hydrogen production, Oxygen production, Nanoparticle, Gallium nitride, Zinc oxide, Solid solution |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用1H-1,2,4-triazole取代氨氣作為氮源,在真空環境下製備出氮化鎵以及氮化鎵/氧化鋅固溶體(GaN:ZnO)奈米顆粒,並研究這些奈米顆粒應用於光催化水分解反應之活性。藉由調控製備溫度、起始物比例以及起始物添加順序,我們製備出具不同鋅鎵莫耳比的GaN:ZnO,並利用多種方法對產物進行結構、成份與形貌分析及鑑定。我們發現起始物添加順序對於製備GaN:ZnO結構有很大影響,而所製備的產物中均有殘碳存在,碳則與氮或氧形成鍵結,可能會在結構中形成缺陷。光催化活性量測方面,在450 W汞-氙燈光照下,鋅鎵比為0.28的GaN:ZnO於450 °C空氣煅燒後附載Rh2-yCryO3作為共催化劑,以甲醇為犧牲試劑,在可見光(λ > 400 nm,256 mW cm^-2)下的產氫活性為4.7 μmol h^-1g^-1;而鋅鎵比為0.53的GaN:ZnO奈米顆粒,以硝酸銀為犧牲試劑,在可見光下的產氧活性為39.9 μmol h^-1g^-1。我們製備的GaN:ZnO奈米光觸媒活性較低,可能與樣品中存在的碳與結構缺陷有機會成為電子與電洞的再結合中心,致使電子電洞對無法有效分離有關。
In this study, we used 1H-1,2,4-triazole as a nitrogen source to synthesize gallium nitride and gallium nitride/zinc oxide solid solution (GaN:ZnO) nanoparticles for photocatalytic water splitting and hydrogen production. By controlling the temperature of vacuum thermal treatment and the ratio and addition sequence of metal precursors, we synthesized GaN:ZnO with different zinc-to-gallium (Zn/Ga) molar ratio. The composition, structure and morphology of the nanomaterials were extensively characterized by a variety of methods and techniques. We found that the sequence of mixing the precursors is crucial for the formation of GaN:ZnO structure. In addition, all the GaN:ZnO nanomaterials contained residual carbon that bonded to nitrogen or oxygen atom and might thus form structural defects. We studied the photocatalytic activities under irradiation with 450 W Hg-Xe lamp. The sample containing GaN:ZnO with Zn/Ga = 0.28 after further 450 oC-calcination and Rh2-yCryO3 as a cocatalyst showed the highest hydrogen production rate (4.7 μmol h^-1g^-1) in methanol aqueous solution under visible-light irradiation (λ > 400 nm, 256 mW cm^-2). The GaN:ZnO with Zn/Ga = 0.53 showed the highest oxygen production rate (39.9 μmol h^-1g^-1) in silver nitrate aqueous solution under visible-light irradiation. The relative low photocatalytic efficiency of the thus prepared GaN:ZnO nanoparticles may be associated with the presence of residual carbon and structural defects which might serve as the recombination centers of photoexcited electrons and holes.
[1] Hisatomi, T.; Kubota, J. and Domen, K. Chem. Soc. Rev. 2014.
[2] Fujishima, A. and Honda, K. Nature, 1972, 238, 37-38.
[3] Chen, X.; Shen, S.; Guo, L. and Mao, S. S. Chem. Rev. 2010, 110, 6503-6570.
[4] Kudo, A. and Miseki, Y. Chem. Soc. Rev. 2009, 38, 253-278.
[5] Adeli, B. and Taghipour, F. ECS J. Solid State Sci. Technol. 2013, 2, Q118-Q126.
[6] Maeda, K. J Photoch Photobio C, 2011, 12, 237-268.
[7] Zhang, Z. and Yates, J. T., Jr. Chem. Rev. 2012, 112, 5520-5551.
[8] Moriya, Y.; Takata, T. and Domen, K. Coord. Chem. Rev. 2013, 257, 1957-1969.
[9] Domen, K.; Kudo, A. and Onishi, T. J. Catal. 1986, 102, 92-98.
[10] Townsend, T. K.; Browning, N. D. and Osterloh, F. E. ACS nano, 2012, 6, 7420-7426.
[11] Kudo, A.; Sayama, K.; Tanaka, A.; Asakura, K.; Domen, K.; Maruya, K. and Onishi, T. J. Catal. 1989, 120, 337-352.
[12] Kudo, A. J. Catal. 1988, 111, 67-76.
[13] Kanhere, P.; Zheng, J. W. and Chen, Z. Int. J. Hydrogen Energy, 2012, 37, 4889-4896.
[14] Wang, B.; Kanhere, P. D.; Chen, Z.; Nisar, J.; Pathak, B. and Ahuja, R. J. Phys. Chem. C, 2013, 117, 22518-22524.
[15] Yang, M.; Huang, X. L.; Yan, S. C.; Li, Z. S.; Yu, T. and Zou, Z. G. Mater. Chem. Phys. 2010, 121, 506-510.
[16] Sayama, K. and Arakawa, H. J. Phys. Chem. 1993, 97.
[17] Darwent, J. R. and MILL, A. J. Chem. Soc. Faraday Trans. 1982, 78, 359-367.
[18] Erbs, W.; Desilvestro, J.; Borgarello, E. and Gratzel, M. J. Phys. Chem. 1984, 88, 4001-4006.
[19] Kado, Y.; Lee, C. Y.; Lee, K.; Muller, J.; Moll, M.; Spiecker, E. and Schmuki, P. Chem Commun (Camb), 2012, 48, 8685-8687.
[20] Li, Y.; Takata, T.; Cha, D.; Takanabe, K.; Minegishi, T.; Kubota, J. and Domen, K. Adv. Mater. 2013, 25, 125-131.
[21] Liu, X.; Zhao, L.; Domen, K. and Takanabe, K. Mater. Res. Bull. 2014, 49, 58-65.
[22] Abe, R.; Higashi, M. and Domen, K. J. Am. Chem. Soc. 2010, 132, 11828-11829.
[23] Higashi, M.; Abe, R.; Ishikawa, A.; Takata, T.; Ohtani, B. and Domen, K. Chem. Lett. 2008, 37, 138-139.
[24] Sato, J.; Saito, N.; Yamada, Y.; Maeda, K.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K. and Inoue, Y. J. Am. Chem. Soc. 2005, 127, 4150-4151.
[25] Matsumura, M.; Saho, Y. and Tsubomura, H. J. Phys. Chem. 1983, 87, 3807-3808.
[26] Reber, J. and Rusek, M. J. Phys. Chem. 1986, 90, 824-834.
[27] Inoue, Y. Energ. Environ. Sci. 2009, 2, 364.
[28] Ikuma, Y. and Bessho, H. Int. J. Hydrogen Energy, 2007, 32, 2689-2692.
[29] Kasahara, A.; Nukumizu, K.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H. and Domen, K. J. Phys. Chem. B, 2003, 107, 791-797.
[30] Sreethawong, T. and Yoshikawa, S. Catal. Commun. 2005, 6, 661-668.
[31] Chiarello, G. L.; Selli, E. and Forni, L. Appl. Catal. B: Environ. 2008, 84, 332-339.
[32] Pal, B.; Torimoto, T.; Okazaki, K. and Ohtani, B. Chem Commun (Camb), 2007, 483-485.
[33] Hara, M.; Nunoshige, J.; Takata, T.; Kondo, J. N. and Domen, K. Chem. Commun. 2003, 3000.
[34] Navarro, R.; Delvalle, F. and Fierro, J. Int. J. Hydrogen Energy, 2008, 33, 4265-4273.
[35] Domen, K.; Naito, S.; Onishi, T.; Tamaru, K. and Soma, M. J. Phys. Chem. 1982, 86, 3657-3661.
[36] Sreethawong, T.; Suzuki, Y. and Yoshikawa, S. Int. J. Hydrogen Energy, 2005, 30, 1053-1062.
[37] Lee, Y.; Terashima, H.; Shimodaira, Y.; Teramura, K.; Hara, M.; Kobayashi, H.; Domen, K. and Yashima, M. J. Phys. Chem. C, 2007, 111, 1042-1048.
[38] Kadowaki, H.; Saito, N.; Nishiyama, H.; Kobayashi, H.; Shimodaira, Y. and Inoue, Y. J. Phys. Chem. C, 2007, 111, 439-444.
[39] Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J. and Li, C. J. Catal. 2009, 266, 165-168.
[40] Bao, N.; Shen, L.; Takata, T. and Domen, K. Chem. Mater. 2008, 20, 110-117.
[41] Sasaki, Y.; Iwase, A.; Kato, H. and Kudo, A. J. Catal. 2008, 259, 133-137.
[42] Pal, B. J. Catal. 2003.
[43] Dionigi, F.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Xiong, A.; Maeda, K.; Domen, K. and Chorkendorff, I. J. Catal. 2012, 292, 26-31.
[44] Xiong, A. K.; Yoshinaga, T.; Ikeda, T.; Takashima, M.; Hisatomi, T.; Maeda, K.; Setoyama, T.; Teranishi, T. and Domen, K. Eur. J. Inorg. Chem. 2014, 2014, 767-772.
[45] Maeda, K.; Hashiguchi, H.; Masuda, H.; Abe, R. and Domen, K. J. Phys. Chem. C, 2008, 112, 3447-3452.
[46] Duonghong, D.; Borgarello, E. and Graetzel, M. J. Am. Chem. Soc. 1981, 103, 4685-4690.
[47] Maeda, K.; Xiong, A.; Yoshinaga, T.; Ikeda, T.; Sakamoto, N.; Hisatomi, T.; Takashima, M.; Lu, D.; Kanehara, M.; Setoyama, T.; Teranishi, T. and Domen, K. Angew. Chem. 2010, 49, 4096-4099.
[48] Kato, H.; Asakura, K. and Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082-3089.
[49] Ikeda, S.; Fubuki, M.; Takahara, Y. K. and Matsumura, M. Appl. Catal. A, 2006, 300, 186-190.
[50] Xie, T.-H.; Sun, X. and Lin, J. J. Phys. Chem. C, 2008, 112, 9753-9759.
[51] Nakamura, R.; Okamoto, A.; Osawa, H.; Irie, H. and Hashimoto, K. J. Am. Chem. Soc. 2007, 129, 9596-9597.
[52] Zheng, Z.; Huang, B.; Meng, X.; Wang, J.; Wang, S.; Lou, Z.; Wang, Z.; Qin, X.; Zhang, X. and Dai, Y. Chem Commun (Camb), 2013, 49, 868-870.
[53] Serpone, N. J. Phys. Chem. B, 2006, 110, 24287-24293.
[54] Shi, J.; Chen, J.; Feng, Z.; Chen, T.; Lian, Y.; Wang, X. and Li, C. J. Phys. Chem. C, 2007, 111, 693-699.
[55] Ma, S. S.; Hisatomi, T.; Maeda, K.; Moriya, Y. and Domen, K. J. Am. Chem. Soc. 2012, 134, 19993-19996.
[56] Bloh, J. Z.; Dillert, R. and Bahnemann, D. W. Phys. Chem. Chem. Phys. 2014, 16, 5833-5845.
[57] Kanhere, P.; Zheng, J. and Chen, Z. Int. J. Hydrogen Energy, 2012, 37, 4889-4896.
[58] Yang, M.; Huang, X.; Yan, S.; Li, Z.; Yu, T. and Zou, Z. Mater. Chem. Phys. 2010, 121, 506-510.
[59] Bai, H.; Kwan, K. S. Y.; Liu, Z.; Song, X.; Lee, S. S. and Sun, D. D. Appl. Catal. B: Environ. 2013, 129, 294-300.
[60] Khan, S. U.; Al-Shahry, M. and Ingler, W. B., Jr. Science, 2002, 297, 2243-2245.
[61] Sakthivel, S. and Kisch, H. Angew. Chem. Int. Ed. 2003, 42, 4908-4911.
[62] Wu, Z.; Dong, F.; Liu, Y. and Wang, H. Catal. Commun. 2009, 11, 82-86.
[63] Maeda, K. and Domen, K. J. Phys. Chem. C, 2007, 111, 7851-7861.
[64] Tessier, F.; Maillard, P.; Lee, Y.; Bleugat, C. l. and Domen, K. J. Phys. Chem. C, 2009, 113, 8526-8531.
[65] Kasahara, A.; Nukumizu, K.; Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H. and Domen, K. J. Phys. Chem. A, 2002, 106, 6750-6753.
[66] Yamasita, D. Solid State Ionics, 2004, 172, 591-595.
[67] Maeda, K.; Teramura, K.; Lu, D.; Saito, N.; Inoue, Y. and Domen, K. Angew. Chem. 2006, 45, 7806-7809.
[68] Lee, Y.; Watanabe, T.; Takata, T.; Hara, M.; Yoshimura, M. and Domen, K. J. Phys. Chem. B, 2006, 110, 17563-17569.
[69] Salamat, A.; Hector, A. L.; Kroll, P. and McMillan, P. F. Coord. Chem. Rev. 2013, 257, 2063-2072.
[70] Ernst, W.; Neidhardt, J.; Willmann, H.; Sartory, B.; Mayrhofer, P. H. and Mitterer, C. Thin Solid Films, 2008, 517, 568-574.
[71] Gillan, E. G. and Kaner, R. B. Inorg. Chem. 1994, 33, 5693-5700.
[72] Hector, A. L. and Parkin, I. P. Chem. Mater. 1995, 7, 1728-1733.
[73] Hector, A. L. and Parkin, I. P. Polyhedron, 1995, 14, 913-917.
[74] Podsiadlo, S. Thermochim. Acta, 1995, 236, 367-373.
[75] Buha, J.; Djerdj, I.; Antonietti, M. and Niederberger, M. Chem. Mater. 2007, 19, 3499-3505.
[76] Giordano, C.; Erpen, C.; Yao, W. T.; Milke, B. and Antonietti, M. Chem. Mater. 2009, 21, 5136-5144.
[77] Zhao, H.; Lei, M.; Chen, X. and Tang, W. J. Mater. Chem. 2006, 16, 4407.
[78] Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H. and Domen, K. J. Am. Chem. Soc. 2005, 127, 8286-8287.
[79] Maeda, K.; Teramura, K.; Takata, T.; Hara, M.; Saito, N.; Toda, K.; Inoue, Y.; Kobayashi, H. and Domen, K. J. Phys. Chem. B, 2005, 109, 20504-20510.
[80] Ikeda, T.; Xiong, A. K.; Yoshinaga, T.; Maeda, K.; Domen, K. and Teranishi, T. J. Phys. Chem. C, 2013, 117, 2467-2473.
[81] Maeda, K.; Teramura, K.; Lu, D.; Saito, N.; Inoue, Y. and Domen, K. J. Phys. Chem. C, 2007, 111, 7554-7560.
[82] Maeda, K. and Domen, K. Chem. Mater. 2010, 22, 612-623.
[83] Wei, S. and Zunger, A. Phys. Rev. B: Condens. Matter, 1988, 37, 8958-8981.
[84] Du, Y. A.; Chen, Y. W. and Kuo, J. L. Phys. Chem. Chem. Phys. 2013, 15, 19807-19818.
[85] Hisatomi, T.; Maeda, K.; Lu, D. and Domen, K. ChemSusChem, 2009, 2, 336-343.
[86] Sun, X.; Maeda, K.; Le Faucheur, M.; Teramura, K. and Domen, K. Appl. Catal. A, 2007, 327, 114-121.
[87] Chen, H.; Wen, W.; Wang, Q.; Hanson, J. C.; Muckerman, J. T.; Fujita, E.; Frenkel, A. I. and Rodriguez, J. A. J. Phys. Chem. C, 2009, 113, 3650-3659.
[88] Wang, J.; Huang, B.; Wang, Z.; Wang, P.; Cheng, H.; Zheng, Z.; Qin, X.; Zhang, X.; Dai, Y. and Whangbo, M.-H. J. Mater. Chem. 2011, 21, 4562.
[89] Yang, M.; Huang, Q. and Jin, X. Solid State Sci. 2012, 14, 465-470.
[90] Han, W.-Q.; Zhang, Y.; Nam, C.-Y.; Black, C. T. and Mendez, E. E. Appl. Phys. Lett. 2010, 97, 083108.
[91] Hahn, C.; Fardy, M. A.; Nguyen, C.; Natera-Comte, M.; Andrews, S. C. and Yang, P. Isr. J. Chem. 2012, 52, 1111-1117.
[92] Maeda, K.; Teramura, K. and Domen, K. J. Catal. 2008, 254, 198-204.
[93] Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y. and Domen, K. J. Phys. Chem. B, 2006, 110, 13753-13758.
[94] Haasnoot, J. G. Coord. Chem. Rev. 2000, 200, 131-185.
[95] da Silva, G. and Bozzelli, J. W. J. Org. Chem. 2008, 73, 1343-1353.
[96] Lorenz, M. R. and Binkowski, B. B. J. Electrochem. Soc. 1962, 109, 24-26.
[97] Maeda, K.; Teramura, K.; Saito, N.; Inoue, Y. and Domen, K. Bull. Chem. Soc. Jpn. 2007, 80, 1004-1010.
[98] Kumar, M.; Kumar, A.; Thapa, S. B.; Christiansen, S. and Singh, R. Mat. Sci. Eng. B-Solid, 2014, 186, 89-93.
[99] Hattori, A. N.; Endo, K.; Hattori, K. and Daimon, H. Appl. Surf. Sci. 2010, 256, 4745-4756.
[100] Jouan, P. Y.; Peignon, M. C.; Cardinaud, C. and Lempérière, G. Appl. Surf. Sci. 1993, 68, 595-603.
[101] Ech-chamikh, E.; Essafti, A.; Ijdiyaou, Y. and Azizan, M. Sol. Energy Mater. Sol. Cells, 2006, 90, 1420-1423.
[102] Dementjev, A. P.; de Graaf, A.; van de Sanden, M. C. M.; Maslakov, K. I.; Naumkina, A. V. and Serov, A. A. Diamond Relat. Mater. 2000, 9, 1904-1907.
[103] Kumar, S.; Basu, S.; Rana, B.; Barman, A.; Chatterjee, S.; Jha, S. N.; Bhattacharyya, D.; Sahoo, N. K. and Ghosh, A. K. J. Mater. Chem. C, 2014, 2, 481.
[104] Małecka, B.; Gajerski, R.; Małecki, A.; Wierzbicka, M. and Olszewski, P. Thermochim. Acta, 2003, 404, 125-132.
[105] Futsuhara, M.; Yoshioka, K. and Takai, O. Thin Solid Films, 1998, 322, 274-281.
[106] Yashima, M.; Yamada, H.; Maeda, K. and Domen, K. Chem Commun (Camb), 2010, 46, 2379-2381.
[107] Yashima, M.; Maeda, K.; Teramura, K.; Takata, T. and Domen, K. Chem. Phys. Lett. 2005, 416, 225-228.
[108] Ikarashi, K.; Sato, J.; Kobayashi, H.; Saito, N.; Nishiyama, H. and Inoue, Y. J. Phys. Chem. B, 2002, 106, 9048-9053.
[109] Yang, S.-H.; Lu, C.-Y. and Chang, S.-J. J. Elect