研究生: |
俞孟廷 |
---|---|
論文名稱: |
利用鍺奈米晶體實現具低漏電流之二氧化鈦MIM電容 Improved Leakage Current for TiO2-Based MIM Capacitors by Embedding Ge Nanocrystals |
指導教授: |
巫勇賢
Wu, Yung-Hsien |
口試委員: |
高瑄苓
鄭淳護 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 二氧化鈦 、MIM電容 、氮氣電漿處理 、鍺奈米晶體 、庫倫阻斷效應 |
外文關鍵詞: | crystalline TiO2, MIM capacitors, nitrogen plasma, Ge nanocrystals, Coulomb blockade |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在以Pd為電極,結晶態的TiO2為介電層的金屬-絕緣層-金屬 (metal-insulator-metal, MIM) 電容中,可以透過氮氣電漿處理鈍化因晶界引起的缺陷來減小漏電流;繼續將Ge奈米晶粒 (nanocrystals, NCs) 放入結晶態TiO2中,可以再將漏電流抑制約1000倍,在-1 V時達到了4.610-7 A/cm2,同時也保持了極高的電容密度25.2 fF/μm2;奈米晶粒在此處的作用為捕捉電子,引發庫倫阻斷效應 (Coulomb blockade effect) 或是形成內建電場來補償外加電場,達到減小漏電流的目的。
本篇論文中的MIM電容還有一些令人感興趣的優點,像是小的溫度電容係數 (temperature coefficient of capacitance, TCC) 88 ppm/℃,低的介電消散角度 (dielectric loss tangent) 0.02,以及令人滿意的可靠度,在2.5 V加壓的情況下十年後電容變化率為1.74%,此MIM電容不但擁有卓越的表現,同時此低漏電流/高可靠度的MIM電容對應用於下個世代的電路中具有極大的潛力。
With Pd as electrode, crystalline TiO2-based MIM capacitors were found to demonstrate improved leakage current by adopting nitrogen plasma treatment due to the passivation of grain boundary related defects. Through the introduction of Ge nanocrystals into crystalline TiO2, the leakage current can be further suppressed by near 3 orders to be 4.610-7 A/cm2 at -1 V while maintaining high capacitance density of 25.2 fF/μm2. The major role of nanocrystals is to trap electrons and then suppress leakage current by inducing Coulomb blockade effect or building an internal field to compensate the applied external field. The MIM capacitors developed in this work also display other intriguing features in terms of small TCC of 88 ppm/℃, low loss tangent of 0.020 and satisfactory capacitance change of 1.74 % after 10-year operation under 2.5 V stress. The MIM capacitor technology not only exhibits the prominent performance which is advantageous over other TiO2-based capacitors, it also possesses the capability to implement low-leakage/high-reliability MIM capacitors for next generation circuits.
第一章
[1.1] M. Yoshida, T. Kumauchi, K. Kawakita, N. Ohashi, H. Enomoto, T. Umezawa, N.Yamamoto, I. Asano, and Y. Tadaki, “Low temperature metal-based cell integration technology for gigabit and embedded DRAMs”, IEEE IEDM Tech. Dig., p.41, 2007.
[1.2] A. K. Roy, C. Hu, M. Racanelli, C. A. Compton, P. Kempf, G. Jolly, P. N. Sherman, J. Zheng, Z. Zhang and A. Yin, “High density metal insulator metal capacitors using PECVD nitride for mixed signal and RF circuits”, IEEE Interconnect Technology International Conference, p. 133, 1999.
[1.3] H. S. P. Wong, “Beyond the conventional transistor”, IBM J. Res. Develop., vol.46, p. 133, 2002.
[1.4] Y. H. Wu, C. C. Lin, Y. C. Hu, M. L. Wu, J.R. Wu, and L. L. Chen, “High performance metal-insualor-metal capacitor using stacked TiO2/Y2O3 as insulator,” IEEE Electron Device Lett., vol. 32, no. 8, pp. 1107-1109, 2011.
[1.5] C. H. Cheng, C. K. Deng, H. H. Hsu, P. C. Chen, B. H. Liou, A. Chin, and F. S. Yeh, “Lanthanide-Oxides mixed TiO2 dielectrics for high-κ MIM capacitors,” J. Electrochem. Soc., vol. 157, no. 8, pp. H821-H824, 2010.
[1.6] K. C. Chiang, C. H. Lai, A. Chin, T. J. Wang, H. F. Chiu, J. R. Chen, S. P. McAlister, and C. C. Chi, “Very high-κ and high density TiTaO MIM capacitors for analog and RF applications,” Symp. VLSI Tech., pp. 62-63, 2005.
[1.7] C. C. Huang, C. H. Cheng, A. Chin, and C. P. Chou, “Leakage current improvement of Ni/TiNiO/TaN metal-insulator-metal capacitors using optimized N+ plasma treatment and oxygen annealing,” Electrochem Solid-State Lett., vol.10, no. 10, pp. H287-H290, 2007.
[1.8] C. H. Cheng, H. C. Pan, C. C. Huang, C. P. Chou, C. N. Hsiao, J. Hu, M. Hwang, T. Arikado, S. P. McAlister, and A. Chin, “Improvement of the performance of TiHfO MIM capacitors by using a dual plasma treatment of the lower electrode,” IEEE Electron Device Lett. , vol. 29, no. 10, pp. 1105-1107, 2008.
[1.9] C. H. Cheng, H. C. Pan, S. H. Lin, H. H. Hsu, C. N. Hsiao, C. P. Chou, F. S. Yeh, and A. Chin, “High-Performance MIM capacitors using a high-κ TiZrO dielectric,” J. Electrochem. Soc., vol. 155, no. 12, pp. G295-G298, 2008.
[1.10] C. C. Huang, C. H. Cheng, K. T. Lee, and B. H. Liou, “High-Performance metal-insulator-metal capacitor using quality properties of high-κ TiPrO dielectric,” J. Electrochem. Soc., vol. 156, no. 4, pp. G23-G27, 2009.
[1.11] Y. H. Wu, W. Y. Ou, C. C. Lin, J. R. Wu, M. L. Wu, and L. L. Chen, “MIM capacitors with crystalline-TiO2/SiO2 stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 104-106, 2012.
[1.12] D. B. Farmer, and R. G. Gordon, “High density Ru nanocrystal deposition for nonvolatile memory applications,” J. Appl. Phys. vol. 101, pp. 124503, 2007.
[1.13] C. Kang, H. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, “Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, 2003.
[1.14] M. Lukosius, C. Wenger, S. Pasko, H. Mussig, B. Seitzinger, and C. Lohe, “Atomic vapor deposition of titanium nitride as metal electrodes for gate-last CMOS and MIM devices”, Chem. Vap. Deposition, vol. 14, 2008.
[1.15] B. H. Tsao, S. F. Carr, and J. A. Weimer, “Lead zirconatetitanate (PZT) film capacitor with a multilayer construction,” IEEE, pp. 263-270, 1998.
[1.16] E. Lipp, Z. Shahar, B. C. Bittel, P. M. Lenahan, D. Schwendt, H. J. Osten, and M. Eizenberg, “Trap-assisted conduction in Pt-gated Gd2O3/Si capacitors”, Appl. Phys. Lett., vol. 109, p.073724, 2011.
[1.17] T. Iida, M. Nakahara, S. Gotoh, and H. Akibah, ”Precise capacitor structure suitable for submicron mixed analog/digital ASICs”, IEEE 1990 Custom Integrated Circuits Conference, p.13, 1990.
[1.18] S. J. Kim, “High-κmetal-insulator-metal (MIM) capacitors for RF/mixed-signal IC applications”, National University of Singapore, degree of doctor, 2005.
[1.19] K. Stein, J. Kocis, G. Hueckel, E. Eld, T. Bartush, R. Groves, N. Greco, D. Harame, and T. Tewksbury, “High reliability metal insulator metal capacitors for silicon germanium analog applications”, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp. 191-194, 1997.
[1.20] T. Yoshitomi, Y. Ebuchi, H. Kimijima, T. Ohguro, E. Morifuji, H. S. Momose , K. Kasai, K. Ishimaru, F. Matsuoka, Y. Katsumata, M. Kinugawa and H. Iwa, “High performance MIM capacitor for RF BiCMOS/CMOS LSls”, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp.133-136, 1999.
[1.21] “International technology roadmap for semiconductors”, ITRS, 2011 edition.
第二章
[2.1] David R. Lide, “CRC Handbook of Chemistry and Physics version 2008,” pp. 12-114, 2008.
[2.2] J. Rovertson, “Band structures and band offsets of high K dielectrics on Si,” Applied Surf. Sci., vol. 190, pp. 2-10, 2002.
[2.3] M. N. JONES, “Leakage current behavior of reactive RF sputtered HfO2 thin films”, University of Florida, 2003.
[2.4] J. I. Han,W. K. Kim, S. J. Hong and S. K. Park, “Effects of post annealing on current-voltage characteristics of metal-insulator(Ta2O5)-metal type thin-film diodes”, Journal of the Korean Physical Society, vol. 39, p.868, 2001.
[2.5] C. W. Chen,T. C. Chang, P. T. Liu, T. M. Tsai, H. C. Huang, J. M. Chen, C. H. Tseng, C. C. Liu, T. Y. Tseng, “Investigation of the electrical properties and reliability of amorphous SiCN”, Thin Solid Films, 2004.
[2.6] A. Krause, W. M. Weber, U. Schöder, D. Pohl, B. Rellinghaus, J. Heitmann, and T. Mikolajick, “Reduction of leakage currents with nanocrystals embedded in an amorphous matrix metal-insulator-metal capacitor stacks,” Appl. Phys. Lett., vol. 99, p. 222905, 2011.
[2.7] Y. H. Wu, W. Y. Ou, C. C. Lin, J. R. Wu, M. L. Wu, and L. L. Chen, “MIM capacitors with crystalline-TiO2/SiO2 stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 104-106, 2012.
第三章
[3.1] H. Choi, M. Chang, M. Jo, S. J. Jung, and H. Hwang, “Improved memory characteristics of Ge nanocrystals using a LaAlO3 buffer layer,” Electrochem. Solid-State Lett., vol. 11, no. 6, pp. 154-156, 2008.
第四章
[4.1] Y. H. Wu, W. Y. Ou, C. C. Lin, J. R. Wu, M. L. Wu, and L. L. Chen, “MIM capacitors with crystalline-TiO2/SiO2 stack featuring high capacitance density and low voltage coefficient,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 104-106, 2012.
[4.2] T. C. Chang, S. T. Yan, P. T. Liu, C. W. Chen, S. H. Lin, and S. M. Sze, “A novel approach of fabricating germanium nanocrystals for nonvolatile memory application,” Electrochem. Solid-State Lett., vol. 7, no. 1, pp. G17-G19, 2007.
[4.3] D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, and T. Hirai, “Photocatalytic H2O2 production from Ethanol/O2 system using TiO2 loaded with Au-Ag bimetallic alloy nanoparticles,” ACS Catal., vol. 2, no. 4, pp. 599-603, 2012.
[4.4] C. C. Wang, Y. K. Chiou, C. H. Chang, J. Y. Tseng, L. J. Wu, C. Y. Chen, and T. B. Wu, “Memory characteristics of Au nanocrystals embedded in metal-oxide-semiconductor structure by using atomic-layer-deposited Al2O3 as control oxide,” J. Phys. D: Appl. Phys., vol. 40, pp. 1673-1677, 2007.
[4.5] N. Negishi, K. Takeuchi, T. Ibusuki, “Surface structure of the TiO2 thin film photocatalyst,” J. Mater. Sci., vol. 33, pp. 5789-5794, 1998.
[4.6] J. H. Lee, Y. C. Lin, and B. H. Chen, “A new cost-effective metal-insulator–metal capacitor processed at 350 °C using Ni2Si fully silicided amorphous silicon electrodes,” IEEE Trans. Electron Devices, vol. 58, no. 3, pp. 672-676, 2011.
[4.7] R. Padmanabhan, N. Bhat, and S. Mohan, “Performance and reliability of Gd2O3 and stacked Gd2O3-Eu2O3 metal-insulator-metal capacitors,” IEEE Trans. Electron Devices, vol. 60, no. 5, pp. 1523-1528, 2013.
第五章
[5.1] F. M. Yang, T. C. Chang, P. T. Liu, U. S. Chen, P. H. Yeh, Y. C. Yu, J. Y. Lin, S. M. Sze, and J. C. Lou, “Nickel nanocrystals with HfO2 blocking oxide for nonvolatile memory application,” Appl. Phys. Lett., vol. 90, p. 222104, 2007.