簡易檢索 / 詳目顯示

研究生: 林曉菁
論文名稱: 一位五年級教師實施代數教學之行動研究
An Acion Research to Implement Algebra Teaching by a Fifth-Grade Teacher
指導教授: 林碧珍
口試委員:
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所
Graduate Institute of Mathematics and Science Education
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 140
中文關鍵詞: 算式填充題代數式等式代數數學專業成長團體
外文關鍵詞: number sentences with bracket, algebraic expressions, equations, algebra, mathematical professional development team
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是描述研究者進行代數教學的行動歷程,包含在行動中所遭遇的問題、解決的策略、影響教師改變教學策略的因素,以及研究者在行動歷程中的反思。
    在本研究中,研究者以自己任教的班級為研究場域,參與者除了研究者本身,還包含班上的32位學生,以及跨校專業成長團隊成員。在進入教學前,研究者依據文獻、各版本教材、與諍友的討論、學生的前測表現來設計教材與活動,並且進行教學。整個教學設計包含「列算式填充題」、「認識代數式」、「列代數式」、「代入求值」、「列等式」以及「等式求解」六個部份。
    研究期間,研究者以閱讀文獻、分析九年一貫課程綱要及教材、進行前測、分析學生的解題記錄及師生對話、撰寫教學反思日記和諍友交換意見等方式,來設計並修正行動策略。此外,也參加了「跨校教師的數學專業成長團體」,並藉由與「跨校教師數學專業成長團體」的教室觀察與討論會來澄清疑惑,形成可能的解決策略。
    研究結果發現:五年級學生在代數學習時,遇到的困難有:(1)無法依題意列算式填充題。(2)代數式表示數量的概念薄弱。(3)無法依題意列等式。研究者面對學生遇到上述問題時,因應的策略:(1)利用各種運算符號及括號在不同位置的情境問題,讓學生討論。(2)利用天平的操作讓學生認識代數式。(3)改變布題情境並且以分段布題方式,使學生列出代數式及等式。(4)以等號兩邊相等的關係引入等式。
    最後,本研究對五年級代數教學及未來研究提出建議。在五年級代數教學方面:學生要從算術思維過渡到代數思維,他們靠的就是列算式填充題的經驗,也就是教師必須讓學生具有列算式填充題的能力,才能進行列等式的教學;代數式所表示的意義,須要讓學生瞭解,並且有機會利用它表示結果。對未來研究則可針對缺乏列算式填充題的學習下,對學生在代數的學習受到影響有多大的問題進行相關的研究。


    This study described a teacher’s practices of implementing algebra teaching. The researcher discussed the dilemma the teacher encountered in practice and its solutions. The study also examined the factors affecting the changes of teaching strategies and the teacher’s self- reflections.
    The setting of the study was the researcher’s class. The participants were not only the researcher, but also the 32 students in the class. The researcher, as the instructor, also attended “mathematical professional team” to discuss the teaching of algebra. The whole teaching design included six parts: listing number sentences with bracket, recognizing the algebra expressions, listing algebraic expressions, a value placed in unknown, listing equation, and solving equation.
    During the process of the research, the researcher designed teaching materials and activities, revised the activity strategies through the analysis of records of question-solving records from students, and the conversations between the teacher and students, writing the reflection diary, discussing it with students, and exchanging opinions with other teachers. Besides, the researcher also attended “inter-school teachers mathematic professional development team”, and through class observations and the seminars, the researcher had a more precise grasp of the teaching and a better understanding of students’ learning difficulties.
    The research revealed that the grade-five students’ difficulties in learning algebra expressions are: (1) students can’t list the number sentences with bracket according to the meaning of the question, (2) concept of algebraic expression representing quantity is weak, (3) students can’t list equation according the meaning of the question. Teacher’s strategies for dealing with the problems are as follows: (1) Using every kind of operators and changing the place of bracket to make students discuss with others, (2) Making students recognize algebraic expressions by the concrete operations, (3) Changing the problem situation and making the students list algebraic expressions and equations by using segmented questions, (4) Revealing equations by the equality axiom.
    Finally, this research made some suggestions for future teaching and researches. First, when students’ arithmetic thinking transfer to algebraic thinking, they relied on their experience of listing fill-in blank questions; therefore, teacher must make students have the ability to list fill-in blank questions before implementing the teaching of listing equation. Second, teacher must make students recognize the meaning of algebraic expressions, and had the chance to use the algebraic expressions to solve problems. In future research, we can debate the effect on students who learn algebra without learning number sentences with bracket.

    第一章 緒論 第一節 研究動機-------------------------------------------1 第二節 研究目的與問題-------------------------------------3 第三節 名詞釋義-------------------------------------------3 第二章 文獻探討 第一節 代數相關概論----------------------------------------4 第二節 代數學習的困難-------------------------------------12 第三節 代數教材分析---------------------------------------14 第三章 研究方法 第一節 研究情境-------------------------------------------25 第二節 研究歷程-------------------------------------------29 第三節 研究資料的蒐集與分析-------------------------------32 第四節 研究效度-------------------------------------------36 第四章 行動歷程 第一節 瞭解學生先備經驗的行動歷程-------------------------37 第二節 代數補救教學的行動歷程-----------------------------43 第三節 列式子教學的行動歷程-------------------------------76 第四節 列等式教學的行動歷程------------------------------103 第五章 行動後的分享與建議 第一節 行動後的分享--------------------------------------123 第二節 建議---------------------------------------------128 參考文獻 中文部分--------------------------------------------------130 西文部分--------------------------------------------------131 附錄目錄 附錄一 五年級代數教學活動前(後)測卷-----------------------133 附錄二 列算式填充題前測卷----------------------------------138 附錄三 算式填充題前測題目及答對率---------------------------139 附錄四 算式填充題隨堂測驗題目------------------------------140

    一、中文部份
    方文彬(2008)。不同教學策略對小六學童的算術解題與代數解題之影響。台北市:國立臺北教育大學數學教育研究所碩士論文。
    方吉雄(2000)。原住民國中學生的文字符號概念與代數文字題的解題研究。國立高雄師範大學數學系碩士論文。
    林碧珍(2001)。發展國小教師之學生數學認知知識-理論結合實務研究取向的教師專業發展。台北:師大書苑。
    林碧珍(2002)。協助教師撰寫數學日誌以促進反思能力之協同行動研究。國立新竹師院學報,15,149-180。
    林光賢、林福來、郭汾派( 1989 )。國中生文字符號概念的發展(國科會專題研究計畫成果報告編號:NSC-77-0111-S-004-001-A)。台北:中華民國行政院國家科學委員會。中華民國第五屆科學教育學術研討論文彚編,177-206頁
    洪有情(2003)。青少年的代數運算概念發展研究(國科會專題研究計畫成果報告編號: NSC 91-2522-S-003-016-)。國立台灣師範大學數學系
    夏林清等譯(1999)。行動研究方法導論-教師動手做研究。台北:遠流。
    陳慧珍(2000)。南投縣國一男女生對文字符號概念與代數文字題之解題研究。國立高雄師範大學數學教育研究所碩士論文(未出版)。
    陳惠邦(1998)。教育行動研究。臺北市:師大書苑。
    陳秀聞(2011)。九年一貫數學領域課程六年級和七年級代數教材銜接之研究。國立台北教育大學理學院數學暨資訊教育學系碩士論文。
    黃乃文(2005)。一個以函數觀點發展國中生代數思維的行動研究。台北市:國立臺灣師範大學數學系碩士論文(未出版)。
    潘淑滿(2003)。質性研究:理論與應用。臺北市 : 心理。
    蔡清田(2000)。教育行動研究。臺北市:五南。
    謝闓如(2010)。國小三年級學生之等號概念與概念轉變之研究(國科會專題研究計畫成果報告編號:NSC 97-2511-S-142-002-)。
    謝佳叡(2003)。從算術思維過渡到代數思維。九年一貫課程綱要諮詢小組諮詢意見書。
    謝孟珊(2000)。以不同符號表徵未知數對國二學生解方程式表現之探討。國立台北師範學院數理教育研究所碩士論文。
    謝宜玲(2003)。在課堂討論情境下國一學生文字符號概念及運算相關法則的認知。國立高雄師範大學數學系碩士論文。
    謝和秀(2000)。國一學生文字符號概念及代數文字題之解題研究。國立高雄師範大學數學教育研究所碩士論文。
    戴文賓(1999)。國一學生由算術領域轉入代數領域呈現的學習現象與特徵。彰化師範大學科學教育研究所碩士論文。
    二、西文部份
    Banerjee, R. and Subramaniam K. (2004) ‘Term’ as a bridge concept between algebra and arithmetic, Paper presented at Episteme-1 Conference on Science, Technology andMathematics Education, Goa, India.
    Booth , L.R. ( 1988 ). Child’s difficulties in beginning algebra. In A. F. Coxford(Ed.), The ideas of algebra, K-12(pp.20-32). Reston, VA: National Council of Teachers of mathematics.
    English, L. D.,& Halfordk, G. S.(1995) Mathematics education: models and process. Mahwah: Lawdrence Erlbaum Associates.
    Herscovics, N. & Linchevshi, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics 27(1):59-78.
    Kaput, J. J. (1995). A research base supporting long term algebra reform? In D. T. Owens, M. K. Reed, & G. M. Millsaps (Eds.), Proceedings of the 17th Annual Meeting of PME-NA (Vol. 1, pp. 71-94). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.
    Kieran, C. (1992).The learning and teaching of school algebra .In D. A. Grouws(Ed), Handbook of esearch on mathematics teaching and learning. pp.390- 419. New York: Macmillan Pub.
    Kieran, C. (2004a).Algebraic Thinking in the Early Grades: What Is It? The Mathematics Educator 2004. Vol.8.139-151
    Kieran, C. (2004b). The core of algebra: Reflections on its main activities. In K. Stacey, H. Chick & M. Kendal (Eds.), The Future of the Teaching and Learning of Algebra; The12th ICME Study (pp.21-33). Boston, MA: Kluwer.
    Kieran, C.,& Chalouh, L.(1992). Prealgebra:The transition fromarithmetic to algebra. In T. D. Owens (Ed.), Research ideas for the classroom: Middle grades mathematics. New York:Macmillan.
    Kieran, C. (2007).What do students Struggle with When First Introduced to Algebra Symbols? The National Council of Teachers of Mathematics, 1906 Association Drive, Reston, VA 20191-1502,Tel: (703) 620-9840, Fax: (703) 476-2690, www.nctm.org.
    Kirshner, D.(1989): The visual syntax of algebra . Journal for Research in Mathematics Education, 20,274-287.
    Kuchemann, D. (1981).Algebra. In The CSMS Mathematics Team(Eds), Children’s understanding of mathematics:11-16(pp.102-119). London: John Murray.
    Radford, L. (2006). Algebraic thinking and the generalization of patterns: A semiotic perspective. In S. Alatorre, J. Cortina, M. Saiz, & A. Mendez (Eds.), Proceedings of the 28th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol.1, pp. 2-21). Merida, Mexico: Universidad Pedagogica Nacional.
    Usiskin,Z.(1988). Conceptions of school algebra and uses of variables. In A. F. Coxford(Ed.),The ideas of algebra,K-12(pp.8-19). Reston,VA:National Council of teachers of Mathematics.
    Van Amerom, B.A.(2003)Focusing on informal strategies when linking arithmetic to early algebra. Educational studies in Mathematics, 54, 63-75.
    Warren,E.(2003). The role of arithmetic structure in the transition from arithmetic to algebra. Mathematics Education Research Journal, 15(2), 122-137.
    Sfard,A.(1995). The development of algebra: Confronting historical and psychological perspectives. Journal of Mathematical Behavior, 14, 15-39.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE