簡易檢索 / 詳目顯示

研究生: 黃郁仁
Yu-Ren Hwang
論文名稱: 金屬(Al)/絕緣層/矽(Si)薄膜電容器與場效電晶體之製作與電性分析
The Fabrication and Characterization of Metal(Al)-Oxide-Si Capacitors and Field-effect Transistors Using Dy2O3 and Sm2O3 Gate Oxide
指導教授: 李雅明
Joseph Ya-Min Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 114
中文關鍵詞: 高介電常數薄膜氧化鏑氧化釤
外文關鍵詞: high-k, Dy2O3, Sm2O3
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗中,我們使用射頻磁控濺鍍法沈積Dy2O3和Sm2O3薄膜,所得到的結果顯示絕緣層厚度為8.6和19nm,在電晶體的特性、表面粗糙操度及電流機制的分析,皆有加以研究及探討。
    我們成功地製作了N通道的金屬(Al)/氧化鏑(Dy2O3)及氧化釤(Sm2O3)/半導體(p-Si)的場效電晶體,臨界電壓約在0.2及0.8V,最小的次臨界斜率分別是97和80 mV/dec.,在VD=0.05V下,ION/IOFF的比例有4~5個數量級,顯示電晶體有不錯的電流切換能力。經由次臨界斜率St=2.3(kT/q)[1+(CD+Cit)/Cox]的計算,可以得到界面缺陷電荷密度(Dit)分別為5.82x1012和1.37x1012cm-2-eV-1,而藉由split C-V的方式,我們求得電子的遷移率為251和211cm2/V-s。藉由升溫300K到425K,我們得到臨界電壓對溫度微分的結果,Sm2O3和Dy2O3的電晶體分別為-4.71mV/K和-3.45mV/K/。
    等效厚度為2.97nm的Al/ Sm2O3/ p-Si界面間的電流傳導機制在溫度325K~500K為蕭基發射所主導,所得到的Al/ Sm2O3的蕭基能帶高為0.82 eV及電子的有效質量為0.13m0。
    本實驗中,我們探討了表面粗糙度。在熱退火溫度400~900℃,高介電係數材料與矽之間的表面粗糙度會越來越小,一般來說,Dy2O3/ p-Si 和Sm2O3/ p-Si的介面粗糙度為 0.3~0.5nm。在物性方面,也做了XRD、SIMS、XPS、TEM 和AFM的分析。


    Abstract
    Metal-insulator-semiconductor (MIS) capacitors and n-channel Metal-oxide-semiconductor-field-effective-transistors (MOSFETs) with Sm2O3 and Dy2O3 gate dielectrics were fabricated. The electrical conduction mechanism in Sm2O3 thin films was investigated. The surface roughness of the Sm2O3 and Dy2O3 capacitors was measured by atomic force microscope (AFM). The rms roughness values of the Sm2O3 and Dy2O3 thin films at rapid-thermal-annealed at 500℃ are 1.92 nm and 1.1 nm with an oxide thickness of 19nm. After removing the Sm2O3 and Dy2O3 films surface roughness of silicon is in the range from 0.3~0.5nm.
    It was found that Schottky emission was the dominating conduction mechanism in the electrical field from 0.08 to 0.81 MV/cm in the temperature range from 325K to 500K. Fowler-Nordheim tunneling is the dominating conduction mechanism at the electrical field above 0.9 MV/cm at 77K. The Al/Sm2O3 barrier height and the effective electronic mass calculated from these two conduction mechanisms using an iteration method are 0.82 eV and 0.13 mo, respectively.
    The MOSFETs with Sm2O3 and the Dy2O3 gate dielectric layers show normal IDS-VDS and IDS-VGS characteristics. The effective electron mobility was measured by the split C-V method. The values of the mobility of MOSFETs with Sm2O3 and Dy2O3 gate dielectric are 211 and 251 cm2/V-s, respectively. The dependence of the threshold voltage on temperature for n-channel MOSFETs with Sm2O3 and Dy2O3 gate dielectric was also measured. The δVT/δT values are -4.71 mV/K and -3.45mV/K for n-channel MOSFETs with Sm2O3 and the Dy2O3 gate dielectrics, respectively.

    目 錄 第一章 緒論--------------------------------------------------------------------------1 1.1 前言----------------------------------------------------------------------------------1 1.2 研究動機----------------------------------------------------------------------------2 1.3 High-κ薄膜在DRAM上的應用------------------------------------------------2 1.4 Sm2O3和Dy2O3薄膜的製備方法-----------------------------------------------3 1.5 High-κ薄膜於MOSFET閘極氧化層(Gate Oxide)的發展----------------4 1.6 本論文的研究方向----------------------------------------------------------------5 第二章 熱穩定性(Thermodynamic Stability)之探討---------------6 2.1 「熱穩定性」理論簡介-------------------------------------------------------------6 2.2 矽化物(Silicide)及矽酸鹽(Silicate)的產生----------------------------------7 2.3 其他相關文獻----------------------------------------------------------------------8 第三章Sm2O3和Dy2O3(氧化鏑和氧化釤)薄膜元件的製備----------9 3.1 射頻磁控濺鍍法(RF Magnetron Sputtering)的簡介----------------------9 3.2 歐姆接面(Ohmic contact)的製備--------------------------------------------10 3.3 Sm2O3和Dy2O3薄膜的成長----------------------------------------------------10 3.4 Sm2O3和Dy2O3薄膜電容器的製備------------------------------------------11 3.5 Sm2O3和Dy2O3薄膜電晶體的製備------------------------------------------11 3.6 量測儀器以及實驗儀器介紹---------------------------------------------------14 第四章 Sm2O3和Dy2O3薄膜基本介紹及物性量測分析---------------15 4.1 二次離子質譜儀(SIMS)縱深分佈之分析-----------------------------------15 4.2 X-Ray 繞射分析-----------------------------------------------------------------16 4.3 X-Ray光電子能譜儀(XPS)之分析--------------------------------------------17 4.4 穿隧式顯微鏡(TEM)照相分析------------------------------------------------18 4.5 原子力顯微鏡(AFM)照相分析------------------------------------------------18 第五章 Al/Sm2O3/Silicon電容器基本電性及漏電流機制分析--21 5.1 I-V(電流-電壓)特性曲線量測------------------------------------------------21 5.2 C-V(電容-電壓)特性曲線量測-----------------------------------------------21 5.3 漏電流傳導機制之簡介---------------------------------------------------------22 5.3.1 蕭基發射(Schottky emission)-------------------------------------------23 5.3.2 普爾-法蘭克發射(Poole-Frenkel Emission)--------------------------24 5.3.3 傅勒-諾德翰穿隧(Fowler-Nordheim Tunneling)--------------------25 5.3.4 空間電荷限制電流(space charge limited current, SCLC)----------25 5.4 MIS結構電容器與溫度變化之漏電流傳導機制分析---------------------27 5.5 絕緣層中電子有效質量--------------------------------------------------------30 5.6 本章結論---------------------------------------------------------------------------31 第六章 Al/ Sm2O3和Dy2O3/Silicon場效電晶體基本電性量----33 6.1 IDS-VDS Curve的特性探討------------------------------------------------------33 6.2 IDS-VGS Curve的特性探討------------------------------------------------------34 6.3 次臨界斜率(Sub-threshold Swing)--------------------------------------------34 6.4 臨界電壓(VT)的粹取-----------------------------------------------------------35 6.5 遷移率(Mobility)的探討-------------------------------------------------------36 6.5.1 Split-capacitance-voltage的量測----------------------------------------37 6.5.2場效移動率(Field effect mobility, )與有效通道移動率(Effective channel mobility, )的量測-----------------------------37 6.6電晶體的溫度特性(Temperature dependent)與遷移率衰減機制(Mobility degradation)的討論 6.6.1 通道電阻(channel resistance)在遷移率量測時造成的影響------39 6.6.2 MOS元件溫度特性與遷移率衰減機制-------------------------------39 第七章 結論------------------------------------------------------------------------43 Reference Experimental Diagrams and Tables Appendix A. 電晶體製程之三道光罩圖 B. Short article

    References
    [1] J. L. Autran, R. Devine, C. Chaneliere, and B. Balland, “Fabrication and characterization of Si-MOSFET’s with PECVD amorphous Ta2O5 gate insulator,” IEEE Electron Device Lett., vol. 18, pp. 447-449, 1997.
    [2] C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from Ta(OC2H5)5 precursor,” J. Appl. Phys., vol. 83, no. 9, pp. 4823, 1998.
    [3] Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. C. Cheng, S. P. Tay, T. J. King, and C. Hu, “Leakage current comparison between ultra-thin Ta2O5 films and conventional gate dielectrics,” IEEE Electron Device Lett., vol. 19, no. 9, pp. 341-342, 1998.
    [4] D. Park, Y. King, Q. Lu, T. J. King, C. Hu, A. Kalnitsky, S. P. Tay, and C. C. Cheng, “Transistor characterization with Ta2O5 gate dielectric,” IEEE Electron Device Lett., vol. 19, no. 11, pp. 441-443, 1998.
    [5] B. C. Lai, N. Kung, and J. Y. Lee, “A study on the capacitance -voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications,” J. Appl. Phys., vol. 85, no. 8, pp. 4087-4090, 1999.
    [6] J. C. Yu, B. C. Lai, and J. Y. Lee, “Fabrication and characterization of metal-oxide-semiconductor field-effect transistors and gated diodes using Ta2O5 gate oxide,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 537-539, 2000.
    [7] B. C. Lai, J. C. Yu, and J. Y. Lee, “Ta2O5/Silicon barrier height measured from MOSFETs fabrication with Ta2O5 gated dielectric,” IEEE Electron Device Lett., vol. 22, no. 5, pp. 221-223, 2001.
    [8] T. Gougousi, M. J. Kelly, and G. N. Persons, “The role of the OH species in high-k/polycrystalline silicon gate electrode interface reactions,” Appl. Phys. Lett., vol. 80, pp. 4419-4421, 2002.
    [9] J. A. Gupta, D. Landheer, J. P. Maffrey ,and G. I. Sproule, “Gadolinium silicate gate dielectric films with sub-1.5 nm equivalent oxide thickness ,” Appl. Phys. Lett., vol. 78, pp. 1718-1720, 2001.
    [10] R. L. Nigro, V. Raineri, and C. Bongiorno, “Dielectric properties of Pr2O3 high-k films grown by metalorganic chemical vapor deposition on silicon,” Appl. Phys. Lett., vol. 83, pp. 129-131, 2003.
    [11] S. I. Ohmi, H. Yamamoto, J. Taguchi, K. Tsutsui ,and H. Iwai, “Effects of post dielectric deposition and post metallization annealing processes on metal/Dy2O3/Si(100) diode characteristics,” Jpn. J. Appl. Phys., vol. 43, pp. 1873-1878, 2004.
    [12] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, and Y. Yoshihara, “Advanced Gate Dielectric Materials for Sub-100nm CMOS,” IEDM Tech. Dig., pp. 625-628, 2002.
    [13] V. A. Rozhkov and M. A. Rodionov, “Electric properties of Metal–Dysprosium Oxide–Gadolinium Oxide–Silicon Structures,” Technical Physics Letters, vol. 30, no. 6, pp. 494-496, 2004.
    [14] S. Jeon, and H. Hwang, “Effect of hygroscopic nature on the electrical characteristics of lanthanide oxides (Pr2O3, Sm2O3, Gd2O3, and Dy2O3),”J. Appl. Phys., vol. 93, pp. 6393-6395, 2003.
    [15] V. A. Rozhkov, V. P. Goncharov, and A. Y. Trusova, “Electrical and photoelectrical properties of MIS structures with rare earth oxide films as insulator,” 1995 IEEE 5th International Conference on Conduction and Breakdown in Solid Dielectrics, pp. 552-555, 1995.
    [16] V. A. Rozhkov, A. I. Petrov, V. P. Goncharov, and A.Y. Trusova, “Electrical breakdown of rare-earth oxide insulator thin films in silicon structure,” 1995 IEEE 5th International Conference on Conduction and Breakdown in Solid Dielectrics, pp. 418-422, 1995.
    [17] V.A. Rozhkov, A. Y. Trusova, and I.G. Berezhnoy, “Silicon MIS structures using samarium oxide films,” Thin Solid Films, vol. 325, pp.151-155, 1998.
    [18] K. H. Kim, H. J. Won, and J. S. Choi, “Electrical conductivity of samarium sesquioxide,” J. Phys. Chem. Solids, vol. 45, no. 11, pp. 1259-1264, 1984.
    [19] A. A. Dakhel, “Dielectric and optical properties of samarium oxide thin films,” Journal of Alloys and Compounds, vol. 365, pp. 233-239, 2004.
    [20] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci., Tech. B18, pp. 1785-1791, 2000.
    [21] S. Jeon, K. Im, H. Yang, H. Sim, H. Lee, S. Choi, T. Jang, and H. Hwang, “Excellent electrical characteristics of lanthanide(Pr, Nd, Sm, Gd, and Dy)oxide and lanthanide-doped oxide for MOS gate dielectric applications, ” IEDM Tech. Dig., pp.471-474, 2001.
    [22] N. N. Greenwood and A. Earnshaw, Chemistry of the elements, 1st, New York: Pergamon press, 1984.
    [23] K. J. hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, no. 11, pp. 2757-2776, 1996.
    [24] Z. J. Luo, T. P. Ma, “Ultra-thin ZrO2 (or silicate) with high thermal stability for CMOS gate application,” IEEE Symposium on VLSI Technology Digest of Technical Papers, p.135, 2001
    [25] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS Characteristics of Ultra Thin Rapid Thermal CVD ZrO2 and Zr Silicate Gate Dielectrics,” in IEDM Tech. Dig., pp. 27-30, 2000.
    [26] D. K. Schroder, Semiconductor material and device characteristics, Arizona: Wiley press, 1998.
    [27] S. M. Sze, Physics of Semiconductor Device, 2nd, New York: Wiley Press, 1981.
    [28] M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” J. Appl. Phys., vol. 40, no. 1, pp. 278-283, 1969.
    [29] K. C. Kao and W. Hwang, Electrical Transport in Solids, New York: Pergamon press, 1981.
    [30] P. Mark, and W. Helfrich, “Space-Charge-Limited Currents in Organic Crystals,” J. Appl. Phys. vol. 33, pp.205-216, 1962.
    [31] M. A. Lampert and P. Mark, Current Injection in Solids, Academic press, New York, 1970.
    [32] M. A. Lampert, “Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps,” Phys. Rev., vol. 103, pp.1648-1656, 1956.
    [33] S. G. Sun and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxide silicon surfaces,” IEEE Trans. Electron Devices, vol. 27, pp. 1497-1508, 1980.
    [34] Y. Taur and T. H. Ning , Fundamentals of Modern VLSI Devices, 1st, Cambridge University press, 1998.
    [35] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration”, IEEE Trans. Electron Devices, vol. 41, pp. 2357-2362, 1994
    [36] C. G. Sodini, T. W. Ekstedt, and J. L. Moll, “Charge accumulation and mobility in thin dielectric MOS transistors,” Solid State Electron., vol. 25, no. 9, pp. 833-841, 1982.
    [37] W. K. Henson, K. Z. Ahmed, E. M. Vogel, J. R. Hauser, J. J. Wortman, R. D. Venables, M. Xu, and D. Venables, ”Estimating oxide thickness of tunnel oxide down to 1.4 nm using conventional capacitance-voltage measurement on MOS capacitors”, IEEE Electron Device Lett., vol. 20, pp. 179-181, 1999
    [38] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high- insulator: The role of remote phonon scattering”, J. Appl. Phys., vol. 90, pp. 4587-4608, 2001
    [39] K. Chen, H. C. Wann, J. Dunster, P. K. Ko, and C. Hu, “MOSFET carrier mobility model based on gate oxide thickness, threshold voltage and gate voltages,” Solid-State Electronics, vol. 39, no. 10, pp. 1515-1518, 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE