簡易檢索 / 詳目顯示

研究生: 許文豪
Wen-Hao Hsu
論文名稱: 圖形辨識概述與實作
Survey and Implementation of Pattern Recognition
指導教授: 張智星
Jyh-Shing Roger Jang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 53
中文關鍵詞: 圖形辨識特徵選取特徵粹取分類法分群法
外文關鍵詞: pattern recognition, feature selection, feature extraction, classifier, clustering
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文討論圖形辨識系統中常見的一些理論與方法,除了從巨觀的觀點來分析整個圖形辨識系統外,也分別討論各個子系統中常見的方法。圖形辨識系統雖然應用廣泛,不過其精神卻是一致的,整個圖形辨識流程大抵可以分為:特徵表現、特徵選取或特徵粹取、分類器設計以及系統辨識率測試幾個步驟。在特徵表現中,我們會將資料中的特徵量化取出,然後藉由特徵選取或者特徵粹取找出較具分類效果的特徵,藉以降低資料維度,文中我們同時也討論了其他降低資料點的方法,以期能提升辨識速度。接著,我們根據資料是否包含類別資訊以及其他應用考量因素而採用分群法或分類法來進行分類器設計,規範出該圖形辨識系統的分類函數,最後藉由測試資料來驗證該系統的分類函數是否完善,是否需要重新設計分類器,甚至是重新進行特徵選取或特徵粹取以取得更具分類代表性的特徵。
    由於圖形辨識是一門涵蓋領域相當廣泛的科學,各式各樣的方法也在不斷被發掘與改良中,根據不同的應用層面,我們無法說有哪一種方法絕對是「最好的」圖形辨識方法,一套優良的圖形辨識系統,除了有賴完整的系統設計流程與測試改良外,更有賴於設計者本身對該應用領域的背景知識是否充足,唯有尋得最適合的特徵與比對方式,才能設計出最佳的圖形辨識系統。

    最後,我們也討論了幾種在圖形辨識中常見的加速方法,以期在維持系統的辨識率前提下,也能同時提升系統的辨識速度,縮短系統的反應時間。


    一、 圖形辨識簡介 1 - 1. 什麼是圖形辨識? 1 - 2. 基本的圖形辨識流程 1 - 3. 圖形辨識的應用 二、 距離與相似度 2 - 1. 歐幾里得距離 2 - 2. L-p Norms 2 - 3. 餘弦相似度 2 - 4. 最長相同子字串 2 - 5. 最長相同連續子字串 2 - 6. 動態時間扭曲 三、 分類法 3 - 1. 最近鄰居決定法則 3 - 2. 貝式分類法 3 - 3. 二次分類法 3 - 4. 線性分類法 3 - 5. 學習式向量量化 四、 錯誤率預估 4 - 1. 外視錯誤率估測法 4 - 2. 遮蔽式錯誤率估測法 4 - 3. 「一次挑一個」錯誤率估測法 4 - 4. 輪迴錯誤率估測法 五、 分群法 5 - 1. 階層式分群法 5 - 1 - 1. 階層式聚合演算法 5 - 1 - 2. 階層式分裂演算法 5 - 2. 分割式分群法 5 - 2 - 1. Forgy's 演算法 5 - 2 - 2. K-means 演算法 5 - 2 - 3. 模糊C-means分群法 5 - 2 - 4. 向量量化 六、 用於分類的資料量縮減 6 - 1. 資料編修 6 - 2. 資料濃縮 七、 降低資料維度 7 - 1. 特徵選取 7 - 2. 特徵粹取 7 - 2 - 1. 包含類別資訊的特徵粹取 7 - 2 - 1 - A. 線性識別分析 7 - 2 - 2. 不包含類別資訊的特徵粹取 7 - 2 - 2 - A. 主要分量分析法 八、 最近鄰居法則之加速方法 8 - 1. 階層式加速法 8 - 2. 分枝限制加速法 九、 結論與未來展望 ◎參考資料 ◎英中對照表

    [1] A. K. Jain and R. C. Dubes, "Algorithm for Clustering Data", Prentice-Hall, 1998
    [2] A. Whitney, "A direct method of nonparametric measurement slection", IEEE Trans. Comput., vol. 20, pp.1100-1103, 1971
    [3] C. H. Hiseh, P. C. Lu, and J. C. Chang, "DCT-based codebook design for vector quantization of Images", IEEE Trans. Circuit and Systems for Video Techonology 2, 401-409, 1992
    [4] Earl Gose, Richard Johnsonbaugh, and Steve Jost, "Pattern recognition and Image Analysis", Prentice Hall Inc., New Jersey, 1996
    [5] Fisher, and R. A, "The Use of Multiple Measurements In Taxonomic Problem", 1936, (reprinted in) Contributions to Mathematical Statics, John Wiley & Sons, New York, 1950
    [6] Forgy, "Cluster analysis of multivariance data: efficiency versus interpretability of classifications", Biometerics 21, 768, 1965
    [7] Hui-Chuan Lin, and J. S. Roger Jang, "Survey and Implementation of Clustering Algorithm", MS Thesis, Tsing Hua University, Taiwan, R.O.C., 1998.
    [8] J. Duchene and S. Leclercq, "An optimal transformation for discriminant and principal component analysis", IEEE Trans. PAMI, vol. 10, pp.978-983, 1988
    [9] J. S. Pan, F. R. Mclnnes, and M. A. Jack, "Fast Clustering Algorithm for Vector Quantization", Pattern Recognition 29, 511-518, 1996
    [10] J. Schurmann, "Pattern Classification: A Unified View of Statistical and Neural Approaches", Chap4, John Wiley & Sons, Inc., 1996
    [11] J. T. Tou, and R. C. Gonzalez, "Pattern Recognition Principles", Addison-Wesley Publishing Company, Inc. Published simultaneously In Canada, 1974
    [12] J. -S. R. Jang, C. -T. Sun, and E. Mizutani, "Neural-Fuzzy and soft Computing", Chap 15, 1997
    [13] Jim C. Bezdek, "Fuzzy mathematics In pattern classfication", PhD thesis, Applied Math. Center, Cornell University, Ithaca, 1973
    [14] John R. Deller, Jr., John G. Proakis, and John H. L. Hansen, "Discete-Time Process of Speech Signals", Chap?, 1993
    [15] John R. Deller, Jr. , John G. Proakis, and John H. L. Hansen, "Discrete-Time Process of Speech Signals", Chap 7, 1993
    [16] Keinosuke Fukunaga, "Introduction to Statistical Pattern Recognition", Chap 5, Second Edition, Academic Press, Inc.,1990
    [17] Keinosuke Fukunaga, and Patrenahalli M. Narendra, "A Branch and Bound Algorithm for Computing K-Nearest Neighbors", IEEE Trans. on Computers, July 1975
    [18] MacQueen, "Some method for classification and analysis of multivariant observations", Process of the Fifth Berkeley Symposium on Mathematical Statistical and Probability. University of California Press, 1967
    [19] Maybeck,and P.,"Stochastic Models", Estimation and Control, Vol. 1, Academic Press, New York, 1979
    [20] P. A. Devijver, and J. Kittler, "Pattern Recognition: A Statistical Approach", Chap 10, Prentice-Hall international, Inc., London, 1982
    [21] P. S.Bradley, and U. M. Fayyad, "Refining Initial Points for K-Mmans Clustering", Proceedings of the Fifth International Conference on Machine Learning ICML98, page 91-99, Morgan Kaufman, San Francisco, 1998
    [22] Robert J. Schalkoff, "Pattern Recognition: Statical, Structural and Neural Approaches", Chap5, John Wiley & Sons, Inc., 1992
    [23] S.T, and K.K., "Pattern Recognition", Chap2, Academic Press, 1999
    [24] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, "Introduction to Algorithm", sixteenth printing, 1996
    [25] Y. Linde, A. Buzo, and R. M. Gray, "An Algorithm for Vector Quantizer Design", IEEE Trans. on Comm. 36, 84-95
    [26] Y. W. Chen and C. C. Chen, "Vector Quantization by Principal Component Analysis", Department of Computer Science, National Tsing Hua University, Hisnchu, Taiwan, June 1998

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE