簡易檢索 / 詳目顯示

研究生: 吳皇南
Hung-Nan Wu
論文名稱: 銻元素摻雜對Ti0.5Zr0.5NiSn1-xSbx多元合金熱電性質之影響
Effect of Sb doping on the thermoelectric properties of Ti0.5Zr0.5NiSn1-xSbx multi-element alloys
指導教授: 廖建能
Chien-Neng Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 67
中文關鍵詞: 摻雜合金熱電半赫斯勒
外文關鍵詞: Sb, doping, alloy, thermoelectric, half-Heusler
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以具half-Heusler結構的Ti0.5Zr0.5NiSn四元合金為基礎,探討Ti0.5Zr0.5NiSn1-xSbx五元合金系統經高溫熱處理之後,不同銻成分摻雜比例(x=0~0.5)對於合金熱電性質的影響。實驗結果顯示在室溫條件下,退火前後Seebeck係數絕對值與電阻係數皆隨銻摻雜成份增加而降低。即使是微量添加銻元素,合金電阻係數變化亦相當顯著。分析亦發現成分為x=0.005經熱處理的試片具有最大的功率因子(S2/λ,Power factor) 2.83×10-3W/m-K2。相較於Ti0.5Zr0.5NiSn合金的功率因子0.72×10-3W/m-K2上升約三倍多。在室溫下,x=0.005成份的合金可得最大的ZT值約為0.16,比起Ti0.5Zr0.5NiSn合金的ZT值提升了四倍。此結果説明了銻元素微量添加對於此合金系統的熱電性能具有正面幫助。另外,高溫熱電性質量測結果顯示,Seebeck係數絕對值會隨溫度升高而有上昇之趨勢,摻雜後的試片電阻係數亦隨溫度升高而上昇,表示銻元素摻雜將會使得合金的傳導性質偏向金屬性。綜合而言,低於錫、銻原子百分比總和5 % 之銻元素摻雜對於Ti0.5Zr0.5NiSn1-xSbx合金系統之熱電性質提升有正面的效果。


    A effect of Sb doping (x=0~0.5) on the thermoelectric properties of annealed Ti0.5Zr0.5NiSn1-xSbx multi-element alloys is studied based on Ti0.5Zr0.5NiSn quaternary alloy with half-Heusler structure. The result shows both the absolute value of Seebeck coefficient and electrical resistivity decrease as the quantity of Sb doping increases at room temperature. The change of resistivity is marked for the alloy with slight Sb doping. The maximum power factor(S2/λ) is 2.83×10-3W/m-K2 for the annealed Ti0.5Zr0.5NiSn1-xSbx (x=0.005) alloy. It is three times larger than that of Ti0.5Zr0.5NiSn which is 0.72×10-3W/m-K2. The maximum ZT value is about 0.16 for the Ti0.5Zr0.5NiSn1-xSbx (x=0.005) alloy at room temperature which is four times larger than that of Ti0.5Zr0.5NiSn. Therefore, the lightly Sb doping would dramatically improve the thermoelectric properties of the Ti0.5Zr0.5NiSn alloy system. Besides, the results of thermoelectric properties measurement at high temperature reveal that the absolute value of Seebeck coefficient increases as the temperature rises. The resistivity of Sb doped alloys increases with rising temperature, indicating that the Sb doping would promote the metallic transport properties. Consequently, a slight Sb doping (below 5at% substitution of Sn atoms)would enhance the thermoelectric properties of Ti0.5Zr0.5NiSn1-xSbx alloy system.

    摘要 I 英文摘要 Ⅱ 目錄 Ⅳ 圖目錄 VII 表目錄 IX 第一章 簡介 1 1.1研究動機 1 1.2實驗目的 4 第二章 文獻回顧 5 2.1 熱電簡介 5 2.1.1 熱電現象 5 2.1.2 Seebeck效應 6 2.1.3 Peltier效應 7 2.1.4 Thomson效應 7 2.1.5 三種熱電效應之關聯性 8 2.1.6 熱電性質 12 2.2 熱電材料簡介 14 2.2.1 熱電材料之選擇 14 2.2.2 Half-Heusler結構材料熱電性質 15 2.2.3 材料熱傳導性質之抑制 17 第三章 實驗與分析方法 21 3.1 實驗規劃 21 3.2 試片製備 23 3.2.1 合金成份計算 23 3.2.2 合金試片熔煉 24 3.2.3 高溫熱處理 26 3.3 Seebeck係數量測 27 3.4 電阻係數量測 30 3.5 熱傳導係數量測 34 3.6 霍爾效應量測 38 第四章 結果與討論 40 4.1 Ti0.5Zr0.5NiSn0.9Sb0.1多元合金XRD微結構分析 40 4.2 成份及相分析 42 4.3 多元合金熱電性質 46 4.3.1 電性傳導分析 46 4.3.2 熱傳導性質分析 51 4.3.3 熱電性質評估 53 4.4 高溫熱電性質量測 58 4.4.1 傳導性質分析 58 4.4.2 功率因子 62 第五章 結論 63 參考文獻 65 圖目錄 圖1-1 熱電元件工作原理(a)致冷器(b)發電機 3 圖2-1 Seebeck效應示意圖 6 圖2-2 Peltier效應示意圖 7 圖2-3 Thomson效應示意圖 8 圖2-4 熱電迴路示意圖 9 圖2-5 各類熱電材料之熱電優值(ZT)隨溫度變化圖 14 圖2-6 (a) Heusler晶體結構 (b) half-Heusler晶體結構 16 圖2-7 鋯元素取代比例對平均自由路徑之影響 19 圖2-8 (a)晶粒大小及(b)SPS製程溫度對熱傳導係數的影響 20 圖3-1 實驗流程規劃圖 22 圖3-2 (a)真空電弧熔煉爐設備 (b)水冷銅模 25 圖3-3 試片熱處理流程圖 26 圖3-4 Seebeck係數量測裝置圖 28 圖3-5 電壓差對溫度差作圖 29 圖3-6 四點探針式電阻係數量測 31 圖3-7 電壓對電流作圖 32 圖3-8 四點探針尺寸校正因子對照圖 33 圖3-9 熱傳導係數量測裝置 37 圖3-10 霍爾量測示意圖 38 圖4-1 Ti0.5Zr0.5NiSn0.9Sb0.1多元合金熱處理前後X-ray繞射圖形 41 圖4-2 (a)合金成份元素組成比例 43 圖4-2 (b)合金成份元素組成比例 44 圖4-3 退火處理對於成份相的影響 45 圖4-4 (a)不同銻元素摻雜比例對Seebeck係數影響 49 圖4-4 (b)不同銻元素摻雜比例對電阻係數影響 50 圖4-5 不同銻元素摻雜比例對熱電功率因子影響 50 圖4-6 熱傳導係數與銻元素成份比例關係 52 圖4-7 三種熱傳導係數與銻元素成份比例關係 53 圖4-8 Seebeck係數及電導率隨EF之變化 55 圖4-9 Ti0.5 Zr0.5NiSn1-xSbx合金系統之ZT值變化 57 圖4-10 Seebeck係數隨環境溫度變化情形 58 圖4-11 電阻係數隨環境溫度變化情形 59 圖4-12 lnρ/ρ0對1/T作圖求能隙大小 60 圖4-13 熱電功率因子隨溫度變化關係圖 62 表目錄 表2-1 不同摻雜元素對MNiSn(M=Zr,Hf,Ti)三元合金極性的影響 17 表2-2 Half-Heusler三元合金熱電性質 17 表2-3 異質元素取代之熱導係數比較 17 表3-1 不同合金元素之相關物理性質 24 表3-2 熱電偶線材Seebeck係數補償值 29 表4-1 銻元素摻雜之Ti0.5Zr0.5NiSn1-xSbx合金熱電性質 47 表4-2 Half-Heusler三元合金之熱電性質 49 表4-3 不同散射因子對應之Seebeck係數理論值 55 表4-4 不同合金成份之能隙大小比較 61

    [1] Marlow industries,inc
    http://www.marlow.com/Applications/medical.htm

    [2] Stapfer, G. and Carroll, W.,Thermoelectric Power Conversion for SP-100,Proc. 8th International Conference on Thermoelectric Energy Conversion, (Eds) Scherrer, H. and Scherrer, S., Nancy, France, July 1989 10-13 43.

    [3] NASA’s Pluto-Kuiper Belt Mission
    http://pluto.jhuapl.edu/spacecraft/power.php

    [4] 國家實驗研究院-儀器科技研究中心
    http://www.itrc.org.tw/Publication/Newsletter/no73/p08.php

    [5] S.Bhattacharya, V.Ponnambalam, A.L.Pope, P.N.Alboni, Y.Xia , T.M.Tritt and S.J.Poon , “Thermoelectric properties of Sb-doping in the TiNiSn1-xSbx half-Heusler system” Proc. 18th International Conference on Thermoelectrics (1999)

    [6] CRC Handbook of Thermoelectrics,edited by D.M.Rowe, Ph.D., D.Sc. (CRC Press,Boca Raton,1995) P9-13

    [7] CRC Handbook of Thermoelectrics,edited by D.M.Rowe, Ph.D., D.Sc. (CRC Press,Boca Raton,1995) P443

    [8] M.A Kouacou, J.Pierre, R.V.Skolozdra, J.Phys. Condensed Matter 7 7373 (1995)

    [9] A.N. Caruso, C.N. Borca, D. Ristoiu, J.P. Dowben, Surf. Sci. 525 L109 (2003)

    [10] V.A. Chernenko, Scripta Matter. 40 523 (1999)

    [11] D. Ristoiu, J.P. Nozieres, L. Ranno, J. Magn. Magn. Mater. 219 97 (2000)
    [12] O.I. Bodak, B.V. Padlyak, Yu.V. Stadnyk, J. Pierre, A.V. Tkachuk, L.P. Romaka, J. Alloys Comp. 317-318 357 (2001)

    [13] Heinrich Hohl, Art P Ramirez, Claudia Goldmann, Gabriele Ernst, Bernd Wölfing and Ernst Bucher “Efficient dopants for ZrNiSn-based thermoelectric materials” J.Phys.:Condens. Matter 11 1697-1709 (1999)

    [14] Q.Shen, L. Chen, T.Goto and T. Hirai, J. Yang and G. P. Meisner, C. Uher “Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds” Appl. Phys. Lett. 79 P4165 (2001)

    [15] C. Uher, J. Yang, S. Hu, D. T. Morelli and G. P. Meisner “Transport properties of pure and doped MNiSn(M=Zr,Hf)” Phys. Rev. B 59 8615 (1999)

    [16] K. Mastronardi, D. Toung, C.-C. Wang, P. Khalifah, A. P. Ramirez and R. J. Cava “Antimonides with the half-Heusler structure: New thermoelectric materials” Appl. Phys. Lett. 74 1415 (1999)

    [17] Semiconductors and Semimetals,vol 70:Recent Trends in Thermoelectric Materials Research,Part Two,edited by Terry Tritt, Chap2 (2000)

    [18] S. Bhattacharya and Terry M. Tritt, Y. Xia, V. Ponnambalam and S. J. Poon, N. Thadhani “Grain Structure effects on the lattice thermal Conductivity of Ti-based Half-Heusler alloys” 2002 American Institute of Phtsics

    [19] “The Solid State”, by H. M. Rosenberg,Oxford Physics Series.

    [20] S. Bhattacharya, M. J. Skove, Meredith Russell, Terry M. Tritt “Grain Structure and Thermal Transport properties of TiNiSn1-xSbx and Ti1-yZryNiSn0.95Sb0.05 Half-Heusler Alloys” 2005 International Conference on Thermoelectrics

    [21] Ken Kurosaki, Takuji Maekawa, Hiroaki Muta, Shinsuke Yamanaka “Effect of spark plasma sintering temperature on thermoelectric properties of (Ti,Zr,Hf)NiSn half-Heusler compounds” J. Alloys Compd. 397 296-299 (2005)

    [22] W. Jeischko, Metall. Trans. 1 3159 (1970)

    [23] A. Uhlir Jr., The Bell System Technical Journal 34, 105 (1955)
    F.M. Smits, The Bell System Technical Journal 37, 711-718 (1958)

    [24] Takahiro Katayama, Sung Wng Kim, Yoshisato Kimura and Yoshinao Mishima “The Effects of Quaternary Additions on Thermoelectric Properties of TiNiSn-Based Half-Heusler Alloys” J. Electronic Materials,vol.22, No.11 (2003)

    [25] H. J. Goldsmid, Thermoelectric Refrigation (Plenum,New York, 1964) P.15

    [26] V. Ponnambalam, A. L. Pope, Y. Xia, S. Bhattacharya, S.J. Poon and T.M. Tritt “Effect of Substitution on the Transport Properties of the Half-Heusler Alloy ZrNiSn” Proc.18th International Conference on Thermoelectrics (1999)

    [27] CRC Handbook of Thermoelectrics,edited by D.M.Rowe, Ph.D., D.Sc. (CRC Press,Boca Raton,1995) P55-56

    [28] Hiroaki Muta, Takanori Kanemitsu, Ken Kurosaki and Shinsuke Yamanaka “Substitution effect on thermoelectric properties of ZrNiSn based half-Heusler compounds”

    [29] Terry M. Tritt, S. Bhattacharya, Y. Xia, V. Ponnambalam, S.J. Poon and N. Thadhani “Effects of various Grain structure and Size on the Thermal Conductivity of Ti-based Half-Heusler alloys” Proc. 20th Internation Conference on Thermoelectrics (2001)

    [30] Yong-Gyoo Kim, Kee Hoon Kang, Kee Sool Gam, Jae-Cheon Kim and Ju-Hwang Kim “Measurement of the Seebeck coefficients of binary Cu-Ni alloys” Meas. Sci. Technol. 15 1266-1270 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE