研究生: |
呂侃學 Lyu, Kan-Syue. |
---|---|
論文名稱: |
應用於K 頻段之相移器與OOK 接收器設計 Design of Phase Shifter and OOK Receivers for K-band Applications |
指導教授: |
徐碩鴻
Hsu, S.H. |
口試委員: |
孟慶宗
Meng, C.C. 劉怡君 Liu, Yi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 相移器 、接收器 |
外文關鍵詞: | Phase Shifter, Receivers |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於此論文中,主要將探討應用於K頻段(1240GHz)系統之相移器、OOK解調接收機與解調機之設計、模擬及量測,其應用如無線通訊系統與低雜訊降頻器(Low noise block)等。
於K頻段應用中,完成一應用於相位陣列傳輸端之反射式相移器,利用改良之型諧振負載以降低損耗變異,並使用變壓器方式呈現已縮小整體晶片面積,模擬完成一具大於200o輸出相位之相移器,在最後並結合上述相移器與可調式驅動放大器,模擬完成一具有360o輸出相位之相位陣列傳輸端電路。
在28 GHz OOK解調接收機中,改良傳統封波檢測器頻寬不足的問題,提出使用Cherry-Hooper回授之檢測器並且加入電感性負載增加頻寬。本論文提出一可解調資料最快到1.2 Gb/s的封波檢測器,中心頻為28 GHz。總功率消耗為49 mW,操作電壓為1.2 V。
在28 GHz OOK解調機中,將傳統的NMOS transistor pair中連結兩個汲極端當作全波整流器,且使用了gain-boosted以及 two cross-coupled capcitors增加轉換增益,並在兩級的基頻放大器中使用Actively-enhanced tunable inductor(AETI),來調整負載端的LC peaking的頻率點,完成一具有可解調中心頻為28 GHz,資料速率為4Gb/s的OOK解調機。總功率消耗為20.4 mW,操作電壓為1.2 V。
In this thesis, a phase shifter, an OOK demodulation RX and a demodulator in the K-band (1240GHz) are investigated regarding their designs, simulations and measurements. In this frequency band, there are several important applications, such as wireless communications and low-noise blocks(LNB).
For K-band applications, a reflection type phase shifter (RTPS) for phased-array transmitter is implemented. By utilizing the transformer resonated loads, a compact area is achieved with reduction of loss variations, and. The simulated result achieves at least 200 o phase control range. At last, a full-360o phase shifter is realized, which consists of the proposed RTPS and a tunable driving amplifier. The simulated results of the proposed phase shifter achieves a 360o phase control range, which is suitable for realizing a phased-array transmitter.
For the 28 GHz OOK demodulation receiver, we improve the insufficient bandwidth of the conventional envelope detector, and propose a Cherry-Hooper based envelope detector with inductive peaking to enhance the operation bandwidth. We have realized an envelope detector operating at 1.2 Gb/s, at central frequency of 28 GHz. The total power consumption of the system is 49 mW with a 1.2 V supply voltage.
For the 28 GHz OOK demodulator, we connect two drain terminals in the transistor pair as a full-wave rectifier. By utilizing the gain-boosted technique together with two cross-coupled capcitors, the conversion gain is increased. Also, the actively-enhanced tunable inductor allows adjusting the frequency of the LC peaking at the loading. We realize an OOK demodulator operating at 4 Gb/s, at the central frequency of 28 GHz. The total power consumption of the system is 20.4 mW with a 1.2 V supply voltage.
[1] K. J. Koh and G. M. Rebeiz, “0.13-um CMOS phase shifters for X-, Ku-, and K-Band Phased Arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007.
[2] H. Zarei, C. T. Charles and D. J. Allstot, “Reflective-type phase shifters for multiple-antenna transceivers,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 54, no. 8, pp. 1647-1656, Aug. 2007.
[3] A. Valdes-Garcia, S.T. Nicolson, J.-W. Lai; A. Natarajan, P.-Y. Chen; S.K. Reynolds, J.-H.C. Zhan, D.G. Kam, D. Liu, B. Floyd, “A Fully Integrated 16-Element Phased-Array Transmitter in SiGe BiCMOS for 60-GHz Communications,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2757-2773, Dec. 2010.
[4] R.W. Vogel, “Analysis and design of lumped and lumped distributed element directional couplers for MIC and MMIC applications,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 253–262, Feb. 1992.
[5] F. Ellinger, R. Vogt, and W. Bachtold, “Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 913–917, May 2001.
[6] C.-Y. Kuo, J.-Y. Chang and S.-I. Liu, “A spur-reduction technique for a 5-GHz frequency synthesizer,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol.53, no.3, pp. 526-533, Mar. 2006.
[7] H. Zarei, C.T. Charles and D.J. Allstot, “Reflective-Type Phase Shifters for Multiple-Antenna Transceivers,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 54, no. 8, pp. 1647-1656, Aug. 2007.
[8] J.-C. Wu, T.-Y. Chin, S.-F. Chang and C.-C. Chang, “2.45-GHz CMOS Ref- lection-Type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 2180–2189, Oct. 2008.
[9] J-Y Lyu, S-C Huang and H-R Chuang, “K-Band CMOS Phase Shifter with Low Insertion-Loss Variation,” in IEEE Asia-Pacific Microw. Conf., Dec. 2012, pp. 88.90.
[10] C.-H. Wu, W.-T. Li, J.-H. Tsai, T.-W. Huang, “Design of a K-band low insertion loss variation phase shifter using 0.18-um CMOS process,” in IEEE Asia-Pacific Microw. Conf., Dec. 2010, pp. 1735.1738.
[11] B.-H. Ku, S.-H. Baek and S. Hong, “A Wideband Transformer-Coupled CMOS Power Amplifier for X-Band Multifunction Chips,” IEEE Trans. Microw. Theory Tech., vol. 59, no.6, pp.1599–1609, Jun. 2011.
[12] K.-J. Koh and G. M. Rebeiz, “0.13-um CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007.
[13] Y. Yu, P. G. M. Baltus, A. de Graauw, E. van der Heijden, C. S. Vaucher and A. H. M. Van Roermund, “A 60 GHz Phase Shifter Integrated With LNA and PA in 65 nm CMOS for Phased Array Systems,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1697-1709, Sep. 2010.
[14] Guillermo Gonzalez, Microwave Transistor Amplifier Analysis and Design, 2nd Edition, Prentice Hall, 1996.
[15] W. Cho and S. Hsu, “An ultra-low-power 24 GHz low-noise amplifier using 0.13 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 681-683, Dec. 2010.
[16] B. Razavi, RF Microelectronics, Second Ed., Pearson, 2011.
[17] H. T. Friis, “Noise Figure of Radio Receivers,” Proc. IRE, vol. 44, pp. 419-422, May 1956.
[18] E. M. Cheery and D. E. Hooper, “The Design of Wideband Transistor Feedback Amplifiers,” Proc. IEEE, vol. 110, pp. 375-389, Feb. 1963.
[19] B. Razavi, Design of Integrated Circuits for Optical Communications, Second, Ed., McGraw-Hill, 2012.
[20] J. Lee, Y. Chen and Y. Huang, “A Low-Power Low-Cost Fully-Integrated 60-GHz Transceiver System With OOK Modulation and On-Board Antenna Assembly,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 264-275, Feb. 2010.
[21] K. Kang, F. Lin, D. D. Pham, J. Brinkhoof, C. H. Heng, Y. X. Guo and X. Yuan, “A 60-GHz OOK Receiver With an On-Chip Antenna in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1720-1731, Sep. 2010.
[22] C. W. Byeon, C. H. Yoon and C. S. Park, “A 67-mW 10.7-Gb/s 60-GHz OOK CMOS Transceiver for Shirt-Range Wireless Communications,” IEEE Trans. Microwave Theory Tech., vol. 61, no. 9, pp. 3391-3401, Sep. 2013.
[23] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
[24] X. Yu, J. Baylon, P. Wettin, D. Heo, P. P. Pande, and S. Mirabbasi, “Architecture and design of multi-channel millimeter wave networkon-chip,” IEEE Design Test, vol. 31, no. 6, pp. 19–28, Dec. 2014
[25] J. Lee, Y. Huang, Y. Chen, H. Lu, and C. Chang, “A low-power fully integrated 60 GHz transceiver system with OOK modulation and on-board antenna assembly,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Tech. Dig., Feb. 2009, pp. 316–317.
[26] W. Zhuo et al., “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Brief, vol. 52, no. 12, pp. 875–879, Dec. 2005
[27] K-H Yang, M-C Kuo, T-C Yan, and C-N Kuo, “A 1.3 GHz-5.3 GHz Wideband, High Linearity Balun Low Noise Amplifier,” IEEE Asia-Pacific Microwave Conference (APMC), Dec. 2011.
[28] S. S. Mohan, M. D. M. Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 346–355, Mar. 2000